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ABSTRACT

This paper provides a novel acoustic vector sensor array ar-
chitecture for superdirectivity at low frequencies. It has a
uniform 3 by 3 rectangular geometry of intersensor spacing
less than 0.04 wavelength over its operation frequency band,
with an up to 10.4 dB of directivity index in cylindrically
isotropic noise. This is realized through a mode domain ap-
proach, which accesses the acoustic modes by fitting certain
multipole models to the wavefield observations. Field experi-
ments show that this is a practical solution of implementing a
miniaturized vector sensor array with superdirectivity.

Index Terms— Acoustic vector sensor, multipole, beam-
forming, superdirectivity, array signal processing.

1. INTRODUCTION

For passive underwater acoustic surveillance, the operation
frequency band generally ranges from a few tens to a few
hundreds of Hertz. Under these circumstances, setting the
intersensor spacing at one-half wavelength leads to a huge ar-
ray aperture, making deployment and maintenance of such a
sensor array prohibitively difficult.

Meyer and Elko [1] introduced the mode domain beam-
forming, or simply “modal beamforming”, for a miniatur-
ized differential spherical sensor array to achieve higher or-
der directivity. The acoustic “mode” is referred as the stand-
ing wave components in the wavefield. This concept attracts
much attention and hitherto there have been many superdi-
rective differential array designs [2]-[5]. However, these ap-
proaches do not apply straightforwardly in the case of acous-
tic vector sensors (AVS), which have the first order direc-
tivity by nature. For the last two decades the AVS arrays
have been extensively studied and tested [6]-[13]. Neverthe-
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less, the overwhelmingly majority of these designs are still re-
stricted to the half wavelength intersensor spacing constraint.

The first differential AVS array without the half wave-
length spacing constraint was probably due to Franklin [14].
As a linear array, it suffers from the inconvenience that the
main response axis can not be steered, which has been solved
very recently by Gur [15]. For the two-dimensional (2-D)
acoustic field, Zou and Nehorai [16] developed a mode do-
main approach to gain superdirectivity on a circular differ-
ential vector sensor array. The 2-D symmetric architecture
ensures its main response axis to be steered freely.

This paper provides a uniform rectangular vector sensor
array with superdirectivity subject to a miniaturized aperture.
We base our method on fitting the multipole models to the
differentially processed acoustic particle velocity component
measurements, for the reason that a multipole is directional
but infinitely small in physical dimension. The multipole
models have also been used for superdirective beamforming
by McConnell et al. [17] and by Eichler and Lacroix [18].
However, in these pioneer works the sensors are the omnidi-
rectional pressure sensors and the array geometry is limited
to a circular shape.

2. RECTANGULAR ARRAY ARCHITECTURE

Consider the horizontal 3 × 3 uniform rectangular sensor ar-
ray of intersensor spacing a shown in Fig. 1. The sensor at
the center of the array is chosen as the reference. All these
sensors are biaxial vector sensors, providing measurements
of the particle velocity components of the acoustic wave field
along both the x and the y directions. Slightly different from
the others, in the package of the reference sensor it also com-
prises a pressure sensor.

Similar to [16], it is a 2-D acoustic field in the shallow wa-
ter environment, where the vector sensor array is restricted to
scan the horizontal surface. Assume that a narrowband acous-
tic plane wave arrives from the angle φ at speed c. The fre-
quency ω is very low such that ka � 1 where k = ωc−1 is
the wave number. In contrast, the half wavelength intersensor
spacing requirement implies ka = π. The array manifold can
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Fig. 1. Top view of the geometry of the vector sensor array.
A circle represents a vector sensor, indexed from 1 to 9.

be written as a 9 × 1 vector a(φ) = ax(φ) ⊗ ay(φ), where

ay(φ) =

 e−ika sinφ

1
e+ika sinφ

 ax(φ) =

 e+ika cosφ

1
e−ika cosφ


and ⊗ denotes the Kronecker (element-wise) product. We de-
note the incident wave by s(t). At the receiver, the observa-
tions include the sound pressure component p(t), the particle
velocity components along the x-axis, denoted by the 9 × 1
vector vx(t) = [vx,1(t), . . . , vx,9(t)]T and the other 9 com-
ponents along the y-axis, vy(t) = [vy,1(t), . . . , vy,9(t)]T . A
compact formulation of these observations reads

z(t) =

 p(t)
vx(t)
vy(t)

 =

 1[
cosφ
sinφ

]
⊗ a(φ)

 s(t) + n(t)

where n(t) denotes the noise. For notational simplicity, the
dependence of a signal on twill be often omitted in the sequel.

3. SUPERDIRECTIVE BEAMFORMING

The notion “modal beamforming” coined by Meyer and Elko
[1] was extended recently to the vector sensor case by Zou and
Nehorai [16] where the 2-D acoustic field was considered. In
that 2-D case, the spherical array of omnidirectional sensors
[1] was substituted by the vector sensors configured on a cir-
cular grid. Similar to the circular array case, for the uniform
rectangular vector sensor array herein, superdirectivity is also
achieved through two steps, i.e., the mode extraction and syn-
thesis. However, it needs an extra “decoupling” step to cancel
the errors due to the finite difference, which is the base of the
mode extraction step herein. The three steps will be described
as follows.

3.1. Mode Extraction

Observe that the pressure measurement at the reference sensor
provides a natural estimate of the 0th mode of the acoustic
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Fig. 2. Illustration of the weights associated to the sensor
positions for the 2nd order mode. The highlighted circles in
color denote the enabled sensor, otherwise are those weighed
by 0. The digit to the upper right of the sensor is the weight as-
sociated to it, where the sensor with positive weight is marked
by the solid circle and negative weight by the dashed circle.

field. Hence, we only need to derive the modes of orders
1 ≤ n ≤ N from the observations of the particle velocity
components along both the x and the y axes received at the
L positions. We define a 2N × 2L block diagonal matrix of
weights

G = I2 ⊗ (ΓḠ)

where I2 denotes the 2nd order identity matrix. It links the
2L particle velocity components, denoted by v = [vTx ,v

T
y ]T ,

to a 2N × 1 vector u = [ū1, . . . , ūN , ũ1, . . . , ũN ]
T as

u = Gv. (1)

For the 3 × 3 uniform vector sensor array, it is obvious
that L = 9 and in this paper the highest order of the modes
is given by N ≤ 5. Let κ = ika. The choice of Γ =
diag

(
1, κ−1, κ−2, 4κ−3, 16κ−4

)
is a 5 × 5 diagonal matrix
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Table 1. Results of the Transform (1)
Order n 1 2 3 4 5
ūn cosφ 1 + cos 2φ cosφ+ cos 3φ −1 + cos 4φ −2 cosφ+ cos 3φ+ cos 5φ
ũn sinφ sin 2φ − sinφ+ sin 3φ −2 sin 2φ+ sin 4φ −2 sinφ− sin 3φ+ sin 5φ

of typical element γn and Ḡ is given by the 5 × 9 matrix

Ḡ =


0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 −1 0
0 2 0 −2 0 −2 0 2 0

−1 2 −1 0 0 0 1 −2 1
−1 2 −1 2 −4 2 −1 2 −1

 .
The nth row of Ḡ is deduced from the perspective of

fitting the nth order multipole model, associated with the
nth mode, to the particle velocity observations from the 9
sensor positions. For example, we illustrate the 2nd row of
Ḡ by highlighting the sensor positions associated to nonzero
weights in Fig. 2(a), which clearly shows a realization of the
dipole model. The finite difference of the particle velocity
components along the x-axis from the two enabled sensors
equals

ū2 = γ2(−e−ika cosφ cosφ+ eika cosφ cosφ)

= 2iκ−1 cosφ sin(ka cosφ)

≈ 2 cos2 φ

(2)

where the approximation derives from the fact that

sin(ka cosφ) ≈ ka cosφ

for ka < 0.25. Equation (2) can be further expressed as
ū2 ≈ 1 + cos 2φ. Attention should be paid to the cos 2φ term,
which is exactly the cosine component of the 2nd order mode.
Obviously, such a transform is nonlinear, whereas the wave-
field decomposition used in the circular array case [16] is a
linear transform. We can also deduce ũ2 ≈ sin 2φ by a sim-
ilar argument, which provides the sine component of the 2nd
order mode. For the higher order modes, it is similar, which
follows the radiation of the lateral quadrupole, the octupole,
and so forth. Therefore, the relation (1) can be understood as
a transform that maps the observations of the acoustic field to
the mode domain. The results are tabulated in Table 1.

It should be pointed out that the matrix G is not the only
solution to the mode domain transform. For example, Fig.
2(b) illustrates an alternative realization of a dipole, from
which we can also derive another set of weights for the 2nd
order mode. More solutions can be obtained in a similar
manner.

3.2. Decoupling

From Table 1 we observe that for the rectangular array the
modes extracted from the observations are not necessarily

“pure”. This is understood as coupling between the modes
due to the finite difference errors. To eliminate these errors,
the pressure observation, i.e., the 0th order mode, is used to
decouple the higher order modes. The decoupling can be for-
mulated by a block diagonal matrix

D =

[
D1

D2

]
11×11

where the two blocks D1 and D2 are respectively given by a
6 × 6 and a 5 × 5 lower triangular matrices

D1 =


1
0 1
−1 0 1
0 −1 0 1
1 0 0 0 1
0 3 0 −1 0 1


and

D2 =


1
0 1
1 0 1
0 2 0 1
3 0 1 0 1

 .
The decoupling step renders a (2N + 1) × 1 vector

h(φ) =

[
1

2I2N

]
D

[
1

G

]
z

= [1, 2h̄1(φ), . . . , 2h̄N (φ), 2h̃1(φ), . . . , 2h̃N (φ)]T ,

where h̄n(φ) ≈ cos(nφ) and h̃n(φ) ≈ sin(nφ), providing the
estimates of the 2N + 1 mode components.

3.3. Synthesis

The synthesis step is exactly the same as that of the circular
array case. The vector of the 2N + 1 mode components h(φ)
is projected to the (2N + 1) × 1 steering vector

w(α) = [1, cos(α), . . . , cos(Nα), sin(α), . . . , sin(Nα)]
T

where α is the steering angle, yielding

G(φ) = wT (α)h(φ) ≈
sin 2N+1

2 (φ− α)

sin 1
2 (φ− α)

.

Such a beam pattern has been shown to have the the maximum
directivity in the 2-D isotropic noise [19].
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(a) N = 2
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(b) N = 3
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(c) N = 4
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(d) N = 5

Fig. 3. Measured beam patterns at 170 Hz in the anechoic water tank for 2 ≤ N ≤ 5.
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(d) N = 5

Fig. 4. Measured beam patterns at 170 Hz in the lake for 2 ≤ N ≤ 5.

For N = 5, it is immediate from the beam pattern expres-
sion that the 3 dB beamwitdth is approximately 29.09◦ and
the first sidelobe is −13.02 dB, occurring at φ = α± 46.94◦.
Furthermore, the 2-D directivity index (DI) is given by

DI = 10 log10

2π∫ 2π

0

[
G(φ)

2N + 1

]2
dφ

≈ 10 log10(2N + 1),

which is approximately 10.4 dB.

4. EXPERIMENTS

A prototype of the 3 × 3 vector sensor array has been devel-
oped for the experiments. The intersensor spacing is fixed
to a = 0.12 m such that the array aperture is constrained to
less than 0.5 m. The array was tested first in a water tank,
which is not really anechoic within the interested frequency
band. A sound source was fixed in the far field of the array,
transmitting rectangular continuous wave pulses. The pulses
were repeated at every second and each pulse lasted 20 cy-
cles in terms of the frequency of the continuous wave, or the
carrier. At the receiver, the vector sensor array was rotated
around the z-axis with an angular step of 5◦. A time window
is used to truncate the received signals to suppress the inter-

ference caused by the reverberant environment in the time do-
main. Then, the measured steering vectors were used to form
the desired beam patterns. The beamforming results at 170
Hz, averaged over 15 pulses, are shown in Fig. 3, where the
main response axis is steered at the direction of 0◦. It can be
observed that the measured beam patterns, denoted by the dis-
crete squares, well agree with the theoretical beam patterns.

We also carried out several experiments in a lake of south-
ern China, 2013, which provides a less reverberant environ-
ment compared to the water tank. The experiment setup was
largely reproduced in the lake except that during these exper-
iments the array was rotated with a 15◦ angular step to save
time. For comparison purposes, the results at 170 Hz are also
presented, as shown in Fig. 4. It clearly shows that a practical
superdirective beam pattern is obtained.

5. CONCLUSION

A miniaturized 3 × 3 uniform rectangular vector sensor ar-
ray with superdirectivity has been developed. The method is
based on realizations of the multipole models up to the 5th
order with certain combinations of the vector sensors. Exper-
iments show that it is practical to achieve a directivity index of
10.4 dB with this 3×3 vector sensor array in the 2-D acoustic
field.
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