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ABSTRACT

Multicast beamforming is a part of the Evolved Multimedia Broad-
cast Multicast Service (eMBMS) in the Long-Term Evolution (LTE)
standard for efficient audio and video streaming. The associated
beamformer design problem has drawn considerable attention over
the last decade, but existing solutions are not quite satisfactory. The
core problem is NP-hard, and the available approximations leave
much to be desired in terms of achieving favorable performance-
complexity trade-offs, especially for online implementation. This
paper introduces a new class of adaptive multicast beamforming al-
gorithms that simultaneously cover all bases - featuring guaranteed
convergence and state-of-art performance at low complexity. Each
update takes a step in the direction of an inverse Signal to Noise Ra-
tio (SNR) weighted linear combination of the SNR-gradient vectors
of all users. Convergence is established by recourse to proportional
fairness. Simulation results show that the proposed algorithms out-
perform Semi-Definite Relaxation (SDR) and Successive Linear Ap-
proximation (SLA - the prior state-of-art) at an order of magnitude
lower complexity.
Keywords: Multicast beamforming, max-min, proportional fairness,
eMBMS, LTE

1. INTRODUCTION

Multicast beamforming utilizes multiple transmit antennas and chan-
nel state information at the transmitter (CSIT) to steer transmitted
power towards a group of subscribers while limiting the interference
to other users and systems [1]. Multicasting can be broadly classified
into a) single-group multicasting - where all the subscribers request
a common data stream from the transmitter; and b) multiple-group
multicasting - where different groups of subscribers request differ-
ent data streams from the transmitter. In this paper, we consider
the transmit beamforming problem for the single-group multicast-
ing scenario. When transmitting common data to all the users, the
downlink rate is restricted by the minimum received Signal to Noise
Ratio (SNR) among all the users. Hence, one of the objectivesis to
maximize the minimum received SNR subject to a transmit power
constraint, which is commonly referred to as the max-min beam-
forming (max-minBF) problem. An alternative problem formula-
tion is to minimize the transmit power subject to Quality-of-Service
(QoS) guarantees at the receivers of all the users (minP problem).

1.1. Related Work and Contributions

The minP and max-minBF problems were considered in [1] for the
case where a multi-antenna transmitter (Tx) serves multiple users,
each with a single antenna receiver (Rx). It was shown that the two
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formulations boil down to the same non-convex Quadratically Con-
strained Quadratic Programming (QCQP) problem, which is NP-
hard in general; and Semi-Definite Relaxation (SDR) followed by
Gaussian randomization was proposed to compute approximate so-
lutions. When the number of antennas is large, SDR tends to be
inefficient because it lifts the problem in higher-dimensional space,
so several alternatives have been developed over the years.Recently,
Tranet al. [2] proposed a Successive Linear Approximation (SLA)
algorithm for approximately solving the minP problem. The SLA
algorithm starts with a vector, sayw0 which belongs to the feasi-
ble set. The non-convex constraints of the minP problem are lin-
earized about the pointw0 using first-order Taylor series expansion.
The resulting convex problem is solved to obtain the next iteratew1

which is used for linearization in the next iteration. This procedure
is repeated until the iterates converge to a fixed point. Simulations
show that the SLA algorithm not only performs better than SDRwith
Gaussian randomization, but also has lower worst-case complexity -
O(N +K)3.5 per iteration for SLA vs.O(N2 +K)3.5 overall for
SDR, whereN is the number of antennas at the Tx,K is the number
of users, and the number of SLA iterations is usually small.

SDR or SLA require solving one large or many smaller (but still
demanding) convex optimization problems, respectively. For large
N andK, the computational burden of SDR / SLA becomes pro-
hibitive for practical implementation, and low-complexity alterna-
tives are needed. An iterative low complexity algorithm forapproxi-
mating the max-minBF problem was first proposed by Lozano [3]. In
each iteration, Lozano’s algorithm takes a fixed step along the SNR
gradient direction of the user that had the least SNR in the previous
iteration. This is followed by scaling to satisfy the transmit power
constraint. Simulations showed that Lozano’s algorithm can outper-
form the SDR approach whenK ≫ N . The computational com-
plexity of Lozano’s algorithm isO(KN) for instantaneous rank-one
CSIT, andO(KN2) for long-term higher-rank CSIT - much lower
than SDR and SLA. Matskaniet al. [4] observed that Lozano’s al-
gorithm can exhibit limit cycle behavior, and proposed a variation
called (damped) LLI (Lozano with Lopez Initialization). This em-
ploys a diminishing step size and more sophisticated initialization
using the weight vector that maximizes average SNR [5].

Abdelkaderet al. [6] proposed a low-complexity algorithm based
on select channel orthogonalization using QR decomposition to ap-
proximate the minP problem whenK ≥ N . For every run of this
QR algorithm, a set ofN out ofK channels is randomly chosen and
stacked into a matrixH. The QR decomposition ofH is obtained,
and the beamforming vector is selected as a linear combination of
the columns of theQ factor matrix in the QR decomposition, with
weights obtained in closed form [6]. This is followed by a scaling
step to satisfy the QoS constraints. The final beamforming vector is
the best obtained after a number of random draws as above. Sim-
ulations showed that whenK ≫ N , the QR algorithm performs
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better than SDR with Gaussian randomization, atO(N2) complex-
ity - which is much lower than SDR.

A new and conceptually interesting approach to multicast beam-
forming was recently proposed by Demiret al. [7]. Similar to SDR,
the approach in [7] isolates the nonconvex part of the problem in
a rank-one constraint, but instead of dropping it (as SDR does), it
replaces it with an equivalent non-convex bilinear trace constraint.
The resulting problem is still NP-hard, but amenable to alternating
optimization, which is nice. The drawback is that each alternating
step requires solving an SDP, and one needs to alternate tillconver-
gence, so complexity is high; and the total number of variables is
doubled. Our preliminary experiments with [7] indicate that, in the
case of full-rank covariance matrices (long-term CSIT) it performs
close to SDR with randomization; whereas for rank-one covariances
(instantaneous CSIT) it performs poorly. In any case, the complexity
of [7] is much higher than all other algorithms.

SLA is the state-of-art from the performance point of view - it
attains higher minimum SNR / multicast rate than other methods, but
at relatively high complexity, because it entails solving asequence
of convex optimization problems. This is not appealing for imple-
mentation at a base station, particularly for highN andK. LLI and
QR are of sufficiently low complexity and can outperform SDR in
certain cases, but leave much to be desired in terms of minimum
SNR / multicast rate performance relative to SLA. In short, no al-
gorithm offers state-of-art performance at low-enough complexity.
The more lightweight algorithms (Lozano, LLI, QR) work reason-
ably well, yet remainad-hoc and the tuning of parameters is an art
that requires trial and error.

This paper introduces a new class of adaptive multicast beam-
forming algorithms that simultaneously cover all bases - featuring
guaranteed convergence with no parameter tuning, and state-of-art
performance at low complexity. Each iteration of theAdditive Up-
date (AU) algorithm takes a step in the direction of an inverse-SNR
weighted linear combination of the SNR-gradient vectors ofall users,
computed using the beamforming vector obtained in the previous it-
eration. This is followed by a scaling step to satisfy the transmit
power constraint, and the whole procedure is repeated untilthe it-
erates converge. Convergence is established by recourse topropor-
tional fairness - showing that the AU can be interpreted as succes-
sive convex approximation of proportionally fair beamforming. This
alludes to an interesting link between max-min fairness andpropor-
tional fairness. We also propose aMultiplicative Update which can
be viewed as a limiting case of the AU algorithm. The MU elimi-
nates the need of choosing a step-size and converges faster than the
AU, although we currently have proof of convergence only forthe
AU - the analysis does not carry over verbatim to the MU for techni-
cal reasons. Finally, we propose theMultiplicative Update - Succes-
sive Linear Approximation (MU-SLA) algorithm where the solution
provided by the MU algorithm is used as initialization for asingle
SLA iteration. Simulation results show that MU-SLA outperforms
SLA, while AU and MU operate close to SLA and outperform all
other algorithms, at an order of magnitude lower complexity.

2. PROBLEM DESCRIPTION

We consider a single group multicast cell consisting of a Tx with N

antennas servingK single antenna receivers. The Tx transmits the
common datax which has zero-mean and unit-variance, to all the
K receivers using a unit-norm beamforming vectorw. The corre-
sponding received signal at thekth Rx is given by

yk = w
H
hkx+ zk,∀k ∈ {1, 2, . . . ,K} (1)

wherehk is the channel between the Tx and thekth Rx which is
modelled as a complexN × 1 random vector that is independent
of x. zk is the additive noise at thekth Rx, which has zero-mean,
varianceσ2

k, and is independent ofx andhk. The SNR at thekth

Rx is given by |wH
hk|

2

σ2

k

. We can absorbσk into hk, and thereafter

work with the scaled channels̃hk = hk

σk
. We will assume that this

has already been done, and drop the˜ for brevity. The problem of
interest can then be written as follows.

Π1 arg max
‖w‖2=1

min
k∈{1,2,..,K}

|wH
hk|

2

3. ADDITIVE UPDATE ALGORITHM

The first adaptive algorithm for multicast beamforming was Lozano’s
[3]. In each iteration, Lozano’s algorithm takes a step in a direction
that improves the SNR of the weakest user - the one attaining the
lowest SNR in the previous iteration. In other words, Lozano’s algo-
rithm focuses only on a single (the currently weakest) user in each
iteration, temporarily ignoring all other users. This seems reason-
able, yet it is a culprit behind limit cycles, as improving the SNR
of one user may reduce the SNR of another, and vice-versa. When
there are multiple users experiencing low SNR, it makes intuitive
sense that we should take all into account when taking the next step.
Furthermore, users experiencing different SNR ‘grades’ should be
appropriately weighted in the computation of the new direction. This
intuition naturally suggests the followingAdditive Update (AU) al-
gorithm.

w̃n+1 = wn + α

(
K∑

k=1

Rkwn

wH
n Rkwn + ε

)

, wn+1 =
w̃n+1

‖w̃n+1‖
(2)

whereRk = hkh
H
k ,∀k ∈ {1, 2, ..., K}, α > 0 is a constant step

size, andε > 0 is introduced for numerical stability. The initialw1

can be randomly drawn (and normalized to unit norm), or designed
using another low-complexity algorithm. At the(n+ 1)st iteration,
the update direction is a linear combination of the gradients of the
SNR of all the users at the pointwn. For the(n+1)st iteration, the
weight of the SNR gradient term of each user in the update direction
is inversely proportional to the SNR of that user attained using the
previous iteratewn. Therefore, in the(n + 1)st iteration,wn+1 is
updated along a direction that not only favors the user with the least
SNR in thenth iteration, but also takes into account all users - em-
phasizing those that experienced low SNR in thenth iteration. This
is to be contrasted with [3], [4], which only focus on the weakest
link.

Inverse SNR-weighting of the gradient vectors intuitivelyaims
to balance the SNR of all users. But can this intuition be rigorously
justified? On a more basic level, does this procedure converge? If it
does, then it must converge to a vector that satisfies the fixedpoint
equation

wFP =
1

c

(
K∑

k=1

Rk

wH
FPRkwFP + ε

)

wFP (3)

for some constantc ∈ R.
Proposition 1: The beamforming vector obtained at the(n + 1)st

iteration of the AU algorithm can be interpreted as the solution of a
strongly convex approximation (cf. (5) and (4)) of the proportional

2720



fairness [8] multicast beamforming problemΠ2 maximizing the ge-
ometric mean of the SNR of the users at the pointw = wn.

Π2 w
∗ = arg max

‖w‖2=1

1

2

K∑

k=1

log
(

w
H
Rkw + ε

)

It can be shown that the Hessian off(w) (objective function inΠ2)
is indefinite. Therefore,Π2 is a non-concave maximization problem
which is difficult to solve in general. Consider a strongly concave
approximation off(w).

f(w) ≈ f(wn)+

(∇f(wn))H

︷ ︸︸ ︷
(

K∑

k=1

Rkwn

wH
n Rkwn + ε

)H

(w−wn)−
‖w −wn‖

2

2α

(4)
whereα is the same as in (2). Denote the right hand side of (4)
asu(w,wn). The sum of the first two terms inu(w,wn) is the
first order Taylor series approximation off(w) at w = wn. The
last term inu(w,wn) is a proximal regularizer which is included to
makeu(w,wn) strongly concave. Instead of solvingΠ2, suppose
that we iteratively solveΠ2r to obtainwn+1 from wn.

Π2r wn+1 = arg max
‖w‖2=1

u(w,wn)

It can be seen that the solution ofΠ2r can be obtained in closed
form and is given as follows:

wn+1 =
wn + α

(
∑K

k=1
Rk

wH
n Rkwn+ε

)

wn

‖wn + α
(
∑K

k=1
Rk

wH
n Rkwn+ε

)

wn‖
(5)

It can be seen from (2) and (5) that the(n + 1)st iterate of the AU
algorithm is the solution ofΠ2r. Hence the AU algorithm obtains a
beamforming vector that promotes proportional fairness inthe SNR
of all the users served by the Tx.
Theorem 1: The iterates obtained from the AU algorithm converge
to a KKT point ofΠ2, provided0 < α ≤ 2

L∇f

, whereL∇f
=

∑K

k=1

(
‖Rk‖F

ε
+

2λ2

max
(Rk)

ε2

)

=
∑K

k=1

(
‖Rk‖F

ε
+ 2‖hk‖2

ε2

)

and

λ2
max(Rk) = ‖hk‖

2 is the maximum eigenvalue ofRk.
Proof (sketch): The gradient off(w) atw = wn is given by

∇wf(wn) =
K∑

k=1

Rkwn

wH
n Rkwn + ε

(6)

Now suppose that a projected gradient update algorithm is used for
finding the local maxima of the constrained non-concave maximiza-
tion problemΠ2, where the update step at iterationn+1 is given by
w̃n+1 = wn + α∇wf(wn),wn+1 = PSw (w̃n+1), PSw(.) is the
projection of the argument onto the setSw = {w : ‖w‖2 = 1} and
α is a positive step size (same as in (2)). It can be seen thatwn+1

in (5) is the optimal projection of the gradient updatew̃n+1 onto the
unit ballSw. Furthermore, it can be shown that

• ∇f(w) is Lipschitz continuous inw with a Lipschitz con-
stantL∇f .

• ‖∇2f(w)‖F ≤
∑K

k=1

(
‖Rk‖F

ε
+

2λ2

max
(Rk)

ε2

)

=
∑K

k=1

(
‖Rk‖F

ε
+ 2‖hk‖2

ε2

)

=: L∇f , ∀ ‖w‖ ≤ 1.

In simplifying the upper bound for‖∇2f(w)‖F , we have used that
Rk = hkh

H
k , ∀k = 1, 2, ..., K. Using the convergence results for

the projected gradient method in [9, Chapter 2, p. 240], it can be
shown that iterates of the AU algorithm in (2) converge to a Karush-
Kuhn-Tucker(KKT) point ofΠ2 if 0 < α ≤ 2

L∇f

.

3.1. Multiplicative Update algorithm

Here, we consider a limiting case of the AU algorithm which wewill
call theMultiplicative Update (MU) algorithm. The update step of
the beamforming vector in the(n+ 1)st iteration is given below.

w̃n+1 =

(
K∑

k=1

Rkwn

wH
n Rkwn + ε

)

; wn+1 =
w̃n+1

‖w̃n+1‖
(7)

The new iterate is the unit vector along a linear combinationof the
SNR gradient direction of all theK users (i.e., only the direction
vector of AU algorithm). From (3) and (7) it can be seen that the
MU algorithm has the same fixed point condition as the AU algo-
rithm. The main motivation behind proposing the MU algorithm is
two-fold. First and foremost, simulations show that the MU algo-
rithm always converges to the same fixed point as the AU algorithm,
and generally does so much faster than the AU algorithm. Second,
the MU algorithm does not require choosing a step-sizeα. Unlike
the AU algorithm, however, we do not have theoretical proof of con-
vergence of the MU algorithm at this point.

To gain more insight about the MU algorithm, consider again
the proportional fairness multicast beamforming problemΠ2. Since
the objective function is not concave, consider its first order Taylor
series aboutw = wn (i.e., the objective function ofΠ2m)

Π2m arg max
‖w‖2=1

f(wn) +

(
K∑

k=1

Rkwn

wH
n Rkwn + ε

)H

(w −wn)

wheref(w) is the objective function inΠ2. It is straightforward to
see that the solution ofΠ2m can be obtained in closed form and is
equal to the update in (7). Therefore the(n+1)st iterate of the MU
algorithm is the solution of successive linear approximation ofΠ2 at
w = wn. It can be seen from (2) that the AU update approaches the
MU update asα increases. The technical difficulty of using Theorem
1 for proving convergence of the MU algorithm at this point isthat
the proof in Theorem 1 places an upper bound on the step-size value
of the gradient update, for the iterates to converge.

3.2. MU-SLA algorithm

An iterative successive linear approximation (SLA) algorithm was
proposed by Tranet al. [2] to approximately solve the following
NP-hard problem.

Π3 min
w ∈ CN

‖w‖2

s.t. |wH
hk|

2 ≥ 1, ∀k ∈ {1, 2, ..K}

The SLA algorithm should be started with a feasible initialization
w0. The non-convex constraints for all theK users are linearized
aroundw0 using their first order Taylor series expansion and the
resulting quadratic programming problem is solved to obtain w1,
which is subsequently used for linearization in the next iteration.
Motivated by the high-quality solutions obtained via AU / MU, and
the potential of SLA for “last mile” refinement, we propose com-
bining the two for cases where the computational complexityof one
(as opposed to many) SLA iteration(s) is acceptable. The idea is to
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run MU until convergence, scale the resulting vectorwMU by the
inverse square root of the minimum SNR attained usingwMU (to
maintain feasibility forΠ3) and then use the result to initialize a
single SLA iteration. The resulting vector determines the transmit
beamforming vector direction, which is then scaled to the desired
transmit power. This is the MU-SLA algorithm. As it turns out, MU-
SLA consistently outperforms all other methods in terms of attained
minimum SNR / multicast rate, as illustrated in the simulations. This
is because one iteration of SLA refines the solution of MU, butalso
MU provides a very good initialization to SLA.

4. SIMULATION RESULTS

In this section, the minimum SNR performance of the proposedalgo-
rithms i.e., the AU, MU, and MU-SLA are compared with the SDR
upper bound and state-of-the-art algorithms, namely SLA [2], SDR
with Gaussian randomization [1], Lozano’s algorithm with Lopez
initialization and damping [4] and the QR algorithm [6]. Forthe AU
algorithm, the step-size is selected to satisfy the condition in Theo-
rem 1.

For the simulations, the channel vectorshk were drawn from an
i.i.d. CN (0, I) distribution. The codes were executed using CVX
[10] as the modelling language. The plots were obtained after aver-
aging over 100 Monte-Carlo (MC) runs. For each run, the AU and
the MU algorithms were executed until‖wn+1 − wn‖ ≤ 10−4 or
until reaching1000, whichever occurs first. Fig. 1 compares the
average (taken over MC runs) minimum SNR performance and the
average (again taken over MC runs) computational time of allthe
algorithms versusK for N = 25 transmit antennas. Similarly, Fig.
2 compares the average minimum SNR performance and the com-
putational time of various algorithms versusN for K = 500 users.

It can be seen that the MU-SLA algorithm attains the highest av-
erage minimum SNR among all the algorithms; whereas the average
minimum SNR attained by the MU / AU algorithm is very close to
the SLA algorithm (which performs the best among all the state of
the art methods used for comparison) and significantly better than
SDR. Furthermore, the average computation time of the MU-SLA
algorithm is very close to the MU / AU algorithm, both of which
are significantly less than the SLA and the SDR with randomization
algorithms. Also, it can be seen from Fig. 1 and Fig. 2 that the
gap between the SDR upper bound and the average minimum SNR
achieved by the algorithms increases asK

N
increases (≈ 0.4 dB for

K = 25, N = 25 to ≈ 3.5 dB forK = 500, N = 25 for the MU-
SLA algorithm in Fig. 1; and≈ 0.5 dB forK = 500, N = 150 to
≈ 3.2 dB forK = 500, N = 25 for MU-SLA algorithm in Fig. 2).
This behavior is in concurrence with the results on multicast capac-
ity in [11]: it is difficult to attain a high SNR for all the users asK
increases relative toN when the corresponding channels are drawn
from an i.i.d. zero-mean complex Gaussian distribution. Also it can
be seen that the minimum SNR increases asK

N
decreases because

the Tx has more degrees of freedom at its disposal using whichit is
able to select better transmit beamforming vectors that attain higher
minimum SNR.

5. CONCLUSION

In this paper, we considered the transmit beamforming problem for a
single group multicast cell and proposed novel low-complexity adap-
tive algorithms, namely the AU algorithm, the MU algorithm,and
the MU-SLA algorithm. These new algorithms attain very favor-
able performance - complexity trade-offs. MU-SLA outperforms
all other available algorithms for multicast beamforming,including
SDR and SLA; while MU / AU are close to SLA, which was the
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Fig. 1. Comparison of average minimum SNR and average com-
putational time versus the number of users (K) for a) MU / AU, b)
MU-SLA, c) SLA, d) Lozano with Lopez initialization, e) QR, f)
SDR with1000 Gaussian randomizations, and g) SDR upper bound
for N = 25 antennas.
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putational time versus number of antennas (N ) for a) MU / AU, b)
MU-SLA, c) SLA, d) Lozano with Lopez initialization, e) QR, f)
SDR with1000 Gaussian randomizations, and g) SDR upper bound
for K = 500 users.

previous state-of-art method in terms of attaining the highest mini-
mum SNR / multicast rate. This is quite remarkable given the low
complexity of MU / AU, and even MU-SLA, as compared to SLA
and SDR, and the fact that multicast beamforming is NP-hard.We
proved that AU is guaranteed to converge via an interesting link to
proportional fairness, also exploiting very recent results on the con-
vergence of successive convex approximation for certain types of
non-convex problems.

6. REFERENCES

[1] N.D. Sidiropoulos, T. Davidson and Z.Q. Luo, “Transmit
beamforming for Physical Layer Multicasting,”IEEE Trans.
on Signal Processing, vol. 54, no. 6, pp. 2239-2251, June 2006.

2722



[2] L.N. Tran, M.F. Hanif and M. Juntti, “A Conic Quadratic Pro-
gramming Approach to Physical Layer Multicasting for Large-
Scale Antenna Arrays,”IEEE Signal Processing Letters, vol.
21, no. 1, pp. 114-117, Jan. 2014.

[3] A. Lozano, “Long-Term Transmit Beamforming for Wireless
Multicasting,” Proc. of IEEE ICASSP, pp. 417-420, Apr. 15-
20, 2007, Honolulu, USA.

[4] E. Matskani, N.D. Sidiropoulos, Z.Q. Luo and L. Tassiulas,
“Efficient Batch and Adaptive Approximation Algorithms for
Joint Multicast Beamforming and Admission Control,”IEEE
Trans. on Signal Processing, vol. 57, no. 12, pp. 4882-4894,
Dec. 2009.

[5] M.J. Lopez, “Multiplexing, Scheduling, and Multicasting
Strategies for Antenna Arrays in Wireless Networks,”Ph.D.
Dissertation, Dept. of Elect. Eng. and Comp. Sci., MIT, Cam-
bridge, MA, 2002.

[6] A. Abdelkader, A.B. Gershman and N.D. Sidiropoulos,
“Multiple-Antenna Multicasting using Channel Orthogonal-
ization and Local Refinement,”IEEE Trans. on Signal Process-
ing, vol. 58, no. 7, pp. 3922-3927, July 2010.

[7] O.T. Demir and T.E. Tuncer, “Alternating Maximization Al-
gorithm for the Broadcast Beamforming,”Proc. of EUSIPCO,
Sep. 1-5, 2014, Lisbon, Portugal.

[8] Z.Q. Luo and S. Zhang, “Dynamic Spectrum Management:
Complexity and Duality,”IEEE Trans. on Signal Processing,
vol. 2, no. 1, pp. 57-73, Feb. 2008.

[9] D.P. Bertsekas,Nonlinear Programming, Belmont, Mas-
sachusetts, U.S.A.: Athena Scientific, 2008.

[10] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming,”http://cvxr.com/cvx, April 2011.

[11] N. Jindal and Z.Q. Luo, “Capacity Limits of Multiple An-
tenna Multicast,”Proc. of IEEE ISIT, pp. 1841-1845, July 9-
14, 2006, Seattle, USA.

2723


