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ABSTRACT

Multicast beamforming is a part of the Evolved MultimedisoBd-
cast Multicast Service (eMBMS) in the Long-Term EvolutiaTE)
standard for efficient audio and video streaming. The aatexti
beamformer design problem has drawn considerable atteatier
the last decade, but existing solutions are not quite satisfy. The
core problem is NP-hard, and the available approximatieasd
much to be desired in terms of achieving favorable perfogean
complexity trade-offs, especially for online implemerdat This
paper introduces a new class of adaptive multicast beannigrat-
gorithms that simultaneously cover all bases - featuringrgteed
convergence and state-of-art performance at low complekach
update takes a step in the direction of an inverse Signal ted\Ra-
tio (SNR) weighted linear combination of the SNR-gradiesttors
of all users. Convergence is established by recourse tmpiopal
fairness. Simulation results show that the proposed atguos out-
perform Semi-Definite Relaxation (SDR) and Successivedridg-
proximation (SLA - the prior state-of-art) at an order of magde
lower complexity.

Keywords: Multicast beamforming, max-min, proportional fairness,
eMBMS, LTE

1. INTRODUCTION

Multicast beamforming utilizes multiple transmit antes@ad chan-
nel state information at the transmitter (CSIT) to steengnaitted
power towards a group of subscribers while limiting therifgeence
to other users and systems [1]. Multicasting can be brodd$sified
into a) single-group multicasting - where all the subsashequest
a common data stream from the transmitter; and b) multipbey
multicasting - where different groups of subscribers ratjaéfer-
ent data streams from the transmitter. In this paper, weidens
the transmit beamforming problem for the single-group roatit-
ing scenario. When transmitting common data to all the usbes
downlink rate is restricted by the minimum received Sigoalbise
Ratio (SNR) among all the users. Hence, one of the objecisvies

formulations boil down to the same non-convex Quadratidatn-
strained Quadratic Programming (QCQP) problem, which is NP
hard in general; and Semi-Definite Relaxation (SDR) folldvisy
Gaussian randomization was proposed to compute appraxiseat
lutions. When the number of antennas is large, SDR tends to be
inefficient because it lifts the problem in higher-dimemsibspace,
so several alternatives have been developed over the y&aagently,
Tranet al. [2] proposed a Successive Linear Approximation (SLA)
algorithm for approximately solving the minP problem. THeAS
algorithm starts with a vector, say, which belongs to the feasi-
ble set. The non-convex constraints of the minP problemiare |
earized about the poirt, using first-order Taylor series expansion.
The resulting convex problem is solved to obtain the nexaitsw;
which is used for linearization in the next iteration. Thisgedure
is repeated until the iterates converge to a fixed point. Bitimns
show that the SLA algorithm not only performs better than SR
Gaussian randomization, but also has lower worst-case leaityp-
O(N + K)>® per iteration for SLA vsO(N? + K)** overall for
SDR, whereV is the number of antennas at the F,is the number
of users, and the number of SLA iterations is usually small.

SDR or SLA require solving one large or many smaller (but stil
demanding) convex optimization problems, respectivelgr I&rge
N and K, the computational burden of SDR / SLA becomes pro-
hibitive for practical implementation, and low-complgxilterna-
tives are needed. An iterative low complexity algorithmdpproxi-
mating the max-minBF problem was first proposed by Lozanal{8]
each iteration, Lozano’s algorithm takes a fixed step albegINR
gradient direction of the user that had the least SNR in teeipus
iteration. This is followed by scaling to satisfy the trarispower
constraint. Simulations showed that Lozano’s algorithm @atper-
form the SDR approach whel > N. The computational com-
plexity of Lozano’s algorithm i€)( K N) for instantaneous rank-one
CSIT, andO(K N?) for long-term higher-rank CSIT - much lower
than SDR and SLA. Matskarmt al. [4] observed that Lozano’s al-
gorithm can exhibit limit cycle behavior, and proposed aatin
called (damped) LLI (Lozano with Lopez Initialization). iBhem-

maximize the minimum received SNR subject to a transmit poweploys a diminishing step size and more sophisticated liagiion

constraint, which is commonly referred to as the max-minnbea
forming (max-minBF) problem. An alternative problem forau
tion is to minimize the transmit power subject to QualityS€rvice
(QoS) guarantees at the receivers of all the users (minRggnyb

1.1. Related Work and Contributions

The minP and max-minBF problems were considered in [1] fer th
case where a multi-antenna transmitter (Tx) serves meltigers,
each with a single antenna receiver (Rx). It was shown tteatwo
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using the weight vector that maximizes average SNR [5].
Abdelkaderet al. [6] proposed a low-complexity algorithm based
on select channel orthogonalization using QR decompaositiap-
proximate the minP problem whefl§ > N. For every run of this
QR algorithm, a set oV out of K channels is randomly chosen and
stacked into a matriH. The QR decomposition df is obtained,
and the beamforming vector is selected as a linear combmati
the columns of the factor matrix in the QR decomposition, with
weights obtained in closed form [6]. This is followed by alsta
step to satisfy the QoS constraints. The final beamformirngovés
the best obtained after a number of random draws as above. Sim
ulations showed that wheR > N, the QR algorithm performs
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better than SDR with Gaussian randomizationD&fV?) complex-
ity - which is much lower than SDR.

A new and conceptually interesting approach to multicaatbe
forming was recently proposed by Denatral. [7]. Similar to SDR,
the approach in [7] isolates the nonconvex part of the probite
a rank-one constraint, but instead of dropping it (as SDRsjae
replaces it with an equivalent non-convex bilinear tracest@int.
The resulting problem is still NP-hard, but amenable toraiéng
optimization, which is nice. The drawback is that each at#ng
step requires solving an SDP, and one needs to alternatertifer-
gence, so complexity is high; and the total number of vaesilib
doubled. Our preliminary experiments with [7] indicatetthia the
case of full-rank covariance matrices (long-term CSIT)atfprms
close to SDR with randomization; whereas for rank-one davaes
(instantaneous CSIT) it performs poorly. In any case, tmegtexity
of [7] is much higher than all other algorithms.

SLA is the state-of-art from the performance point of view - i
attains higher minimum SNR / multicast rate than other mashbut
at relatively high complexity, because it entails solvingeguence
of convex optimization problems. This is not appealing fopie-
mentation at a base station, particularly for hijrand K. LLI and
QR are of sufficiently low complexity and can outperform SDR i
certain cases, but leave much to be desired in terms of mmimu
SNR / multicast rate performance relative to SLA. In shoa,af
gorithm offers state-of-art performance at low-enough glexity.
The more lightweight algorithms (Lozano, LLI, QR) work reas
ably well, yet remaired-hoc and the tuning of parameters is an art
that requires trial and error.

whereh;, is the channel between the Tx and #f& Rx which is
modelled as a comple¥’ x 1 random vector that is independent
of . z is the additive noise at the!” Rx, which has zero-mean,
variances?, and is independent of andh,. The SNR at the:!"

Rx is given bym. We can absorb, into hy, and thereafter

2

D'k 5

work with the scaled channels, = 2—’; We will assume that this

has already been done, and droptfar brevity. The problem of
interest can then be written as follows.

II,

arg |why|?

max min
lw|2=1 k€{1,2,...,K}

3. ADDITIVE UPDATE ALGORITHM

. The first adaptive algorithm for multicast beamforming wagéno’s

[3]. In each iteration, Lozano’s algorithm takes a step irraation
that improves the SNR of the weakest user - the one attaihieg t
lowest SNR in the previous iteration. In other words, LoZsiatgo-
rithm focuses only on a single (the currently weakest) useraich
iteration, temporarily ignoring all other users. This seemason-
able, yet it is a culprit behind limit cycles, as improvingetBNR

of one user may reduce the SNR of another, and vice-versanWhe
there are multiple users experiencing low SNR, it makesitinéu
sense that we should take all into account when taking theste.
Furthermore, users experiencing different SNR ‘gradesukhbe
appropriately weighted in the computation of the new digectThis
intuition naturally suggests the followingdditive Update (AU) al-

This paper introduces a new class of adaptive multicast bea"borithm

forming algorithms that simultaneously cover all basesatifgng
guaranteed convergence with no parameter tuning, andcftaie
performance at low complexity. Each iteration of thaditive Up-
date (AU) algorithm takes a step in the direction of an inverseRSN
weighted linear combination of the SNR-gradient vectorlafsers,
computed using the beamforming vector obtained in the pusvit-
eration. This is followed by a scaling step to satisfy thegrait
power constraint, and the whole procedure is repeated tinetiit-
erates converge. Convergence is established by recoupsegor-
tional fairness - showing that the AU can be interpreted ases+
sive convex approximation of proportionally fair beamfamm This
alludes to an interesting link between max-min fairnessogor-
tional fairness. We also proposeMaultiplicative Update which can
be viewed as a limiting case of the AU algorithm. The MU elimi-
nates the need of choosing a step-size and converges faatethie
AU, although we currently have proof of convergence onlytfa
AU - the analysis does not carry over verbatim to the MU fohtee
cal reasons. Finally, we propose tHeiltiplicative Update - Succes-
sive Linear Approximation (MU-SLA) algorithm where the solution
provided by the MU algorithm is used as initialization fosiagle

S Aiteration. Simulation results show that MU-SLA outperforms
SLA, while AU and MU operate close to SLA and outperform all
other algorithms, at an order of magnitude lower complexity

2. PROBLEM DESCRIPTION

We consider a single group multicast cell consisting of a T

antennas servingl single antenna receivers. The Tx transmits the

K

Wn«&»l =wp ta <Z

k=1

Wn«kl
([ W]

Rkwn

)

>7Wn+1_

whereR; = hyhf' | Vk € {1,2,..., K}, a > 0 is a constant step
size, anck > 0 is introduced for numerical stability. The initigt;
can be randomly drawn (and normalized to unit norm), or desig
using another low-complexity algorithm. At tije -+ 1)** iteration,
the update direction is a linear combination of the gradierftthe
SNR of all the users at the poimt,,. For the(n + 1)** iteration, the
weight of the SNR gradient term of each user in the updatetitire
is inversely proportional to the SNR of that user attainedgishe
previous iterataw,,. Therefore, in thén + 1)°* iteration, w1 is
updated along a direction that not only favors the user wighi¢ast
SNR in then'" iteration, but also takes into account all users - em-
phasizing those that experienced low SNR in#f& iteration. This
is to be contrasted with [3], [4], which only focus on the westk
link.

Inverse SNR-weighting of the gradient vectors intuitivalyns
to balance the SNR of all users. But can this intuition beragsly
justified? On a more basic level, does this procedure coa@elgt
does, then it must converge to a vector that satisfies the figad

wHRyw, + €

1 K
wen = (3
k=1

Ry
wH Riywrp +¢
FPIVEWERP

®)

common datar which has zero-mean and unit-variance, to all the

K receivers using a unit-norm beamforming vector The corre-
sponding received signal at th&" Rx is given by

yr = wihgz 4+ 2, Vk € {1,2,..., K} (1)

equation

) WFrPp
for some constant € R.
Proposition 1: The beamforming vector obtained at the + 1)
iteration of the AU algorithm can be interpreted as the sofubf a
strongly convex approximation (cf. (5) and (4)) of the prdmmal
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fairness [8] multicast beamforming probldif, maximizing the ge-
ometric mean of the SNR of the users at the peint w,.

H2 W*

arg

K
1 H

max — log (w Riw + 5)

5 2

2=12

It can be shown that the Hessianfifw) (objective function irlI2)

is indefinite. Therefore I, is a non-concave maximization problem
which is difficult to solve in general. Consider a stronglyncave
approximation off (w).

(Vf(wa )
K
N Ry, W = wa
10 o)+ (3 ) w2
(4)

In simplifying the upper bound fd{V? f(w)|| 7, we have used that
R: = hyhf’ vk = 1,2,..., K. Using the convergence results for
the projected gradient method in [9, Chapter 2, p. 240], iit lba
shown that iterates of the AU algorithm in (2) converge to aush-
Kuhn-Tucker(KKT) point offI2 if 0 < o < %

3.1. Multiplicative Update algorithm

Here, we consider a limiting case of the AU algorithm whichwite
call theMultiplicative Update (MU) algorithm. The update step of
the beamforming vector in the: + 1)** iteration is given below.

K

Wit = (Z

k=1

Rk Wn

. W ‘X/n+1
—_— ntl =
wiHRyw, +¢ /)’

W1 ]

@)

The new iterate is the unit vector along a linear combinatibthe
SNR gradient direction of all thé& users (i.e., only the direction

wherea is the same as in (2). Denote the right hand side of (4)vector of AU algorithm). From (3) and (7) it can be seen that th

asu(w,wy). The sum of the first two terms in(w, w.,,) is the
first order Taylor series approximation #fw) atw = w,. The
last term inu(w, w,,) is a proximal regularizer which is included to
makeu(w, w,,) strongly concave. Instead of solviddz, suppose
that we iteratively solv@I,, to obtainw,,+1 from w,,.

II2r Wyt = arg max u(w,wy)

llwll2=1

It can be seen that the solution Bf2, can be obtained in closed
form and is given as follows:

K Ry,
wo + 0 (S5 grmviye) W

K R
o + o (4L = ) wal

Q)

Wn+1

It can be seen from (2) and (5) that the + 1)°* iterate of the AU
algorithm is the solution ofI2,. Hence the AU algorithm obtains a
beamforming vector that promotes proportional fairneshéSNR
of all the users served by the Tx.

MU algorithm has the same fixed point condition as the AU algo-
rithm. The main motivation behind proposing the MU algamitis
two-fold. First and foremost, simulations show that the Mgoa
rithm always converges to the same fixed point as the AU dlguri
and generally does so much faster than the AU algorithm. r&gco
the MU algorithm does not require choosing a step-sizéJnlike

the AU algorithm, however, we do not have theoretical prdafom-
vergence of the MU algorithm at this point.

To gain more insight about the MU algorithm, consider again
the proportional fairness multicast beamforming probldm Since
the objective function is not concave, consider its firsieortaylor
series abouv = w,, (i.e., the objective function dfil2m)

) (w — wa)

where f(w) is the objective function idI2. It is straightforward to
see that the solution dil2, can be obtained in closed form and is
equal to the update in (7). Therefore the+ 1)** iterate of the MU

K

Iz, arg ‘ma)il flwn) + <Z

2
lFwi k=1

Rkwn
wHRyw, + €

Theorem 1: The iterates obtained from the AU algorithm converge algorithm is the solution of successive linear approxioratf I at

va’

222, (R _ K (IRilr
+ 2 _Zk:I

to a KKT point of Iz, provided) < «a <

YK (HRI;HF + 2\\1;5\?) and
A2 ax(Ri) = ||hy||? is the maximum eigenvalue &
Proof (sketch): The gradient off (w) atw = w,, is given by

whereLv, =

€

K

Vwf(wWn) = Z

k=1

Rkwn

Now suppose that a projected gradient update algorithmeid fo
finding the local maxima of the constrained non-concave meza-
tion problemII., where the update step at iteration- 1 is given by
Wnt1 = Wn + aVw f(Wn), Wnt1 = Ps, (Wnt1), Ps, (.) is the
projection of the argument onto the s&t = {w : |w]||> = 1} and
« is a positive step size (same as in (2)). It can be seermthat
in (5) is the optimal projection of the gradient upd&te, onto the
unit ball S,,. Furthermore, it can be shown that

e V f(w) is Lipschitz continuous irw with a Lipschitz con-
stantLv .

2
o V2 w)llr < S, (LRele 4 Paasfa)) -
SRy (Rl 4 2B = o, ¥ ] < 1.

w = w,. It can be seen from (2) that the AU update approaches the
MU update asv increases. The technical difficulty of using Theorem
1 for proving convergence of the MU algorithm at this pointhat

the proof in Theorem 1 places an upper bound on the step-aize v

of the gradient update, for the iterates to converge.

3.2. MU-SLA algorithm

An iterative successive linear approximation (SLA) alton was
proposed by Trarmt al. [2] to approximately solve the following
NP-hard problem.

IIs min_||w]|?
weCN

st |wihe*>1, Vke{l,2,.K}

The SLA algorithm should be started with a feasible inigation
wy. The non-convex constraints for all tH€ users are linearized
aroundwg using their first order Taylor series expansion and the
resulting quadratic programming problem is solved to obtsi,
which is subsequently used for linearization in the nextaiien.
Motivated by the high-quality solutions obtained via AU / Mahd

the potential of SLA for “last mile” refinement, we proposenco
bining the two for cases where the computational complefigne

(as opposed to many) SLA iteration(s) is acceptable. The isléo
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run MU until convergence, scale the resulting veotor;; by the
inverse square root of the minimum SNR attained usingu (to
maintain feasibility forIIs) and then use the result to initialize a
single SLA iteration. The resulting vector determines taas$mit
beamforming vector direction, which is then scaled to theirde
transmit power. This is the MU-SLA algorithm. As it turns phMtU-
SLA consistently outperforms all other methods in termsttzfiaed
minimum SNR / multicast rate, as illustrated in the simalasi. This

is because one iteration of SLA refines the solution of MU, disb
MU provides a very good initialization to SLA.

4. SIMULATION RESULTS

In this section, the minimum SNR performance of the propadgo-
rithms i.e., the AU, MU, and MU-SLA are compared with the SDR
upper bound and state-of-the-art algorithms, namely SUASPR
with Gaussian randomization [1], Lozano’s algorithm witbpez
initialization and damping [4] and the QR algorithm [6]. Rbe AU
algorithm, the step-size is selected to satisfy the camulith Theo-
rem 1.

For the simulations, the channel vectlswere drawn from an

i.i.d. CN(0,1) distribution. The codes were executed using CVX

[10] as the modelling language. The plots were obtained after-

N
15)

-=-MU/AU

~+- Lozano-Lopez
——QR
—8-SLA

©-MU-SLA
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Fig. 1. Comparison of average minimum SNR and average com-
putational time versus the number of usek§) for a) MU / AU, b)
MU-SLA, c) SLA, d) Lozano with Lopez initialization, €) QR) f
SDR with1000 Gaussian randomizations, and g) SDR upper bound
for N = 25 antennas.

aging over 100 Monte-Carlo (MC) runs. For each run, the AU and

the MU algorithms were executed unffiv.,1 — w,|| < 107 or
until reaching1000, whichever occurs first. Fig. 1 compares the

average (taken over MC runs) minimum SNR performance and the

average (again taken over MC runs) computational time ofhall
algorithms versug< for N = 25 transmit antennas. Similarly, Fig.

2 compares the average minimum SNR performance and the com-

putational time of various algorithms versi¥sfor K = 500 users.

It can be seen that the MU-SLA algorithm attains the highest a
erage minimum SNR among all the algorithms; whereas thegeer
minimum SNR attained by the MU / AU algorithm is very close to
the SLA algorithm (which performs the best among all theestdt
the art methods used for comparison) and significantly béttmn
SDR. Furthermore, the average computation time of the MB-SL
algorithm is very close to the MU / AU algorithm, both of which
are significantly less than the SLA and the SDR with randotitina

---MU/AU
——Lozano-Lopez

Average minimum SNR (dBm)

- =-MU/AU/ Lozano-Lopez
——QR

—4— SDR + randomization

L |—=—sta

Average Computational Time (s)

©-MU-SLA
—&— SDR+randomization
——SDR-bound

- MU-SLA

150 150

50 100 50
Number of Antennas (N) Number of Antennas (N)

algorithms. Also, it can be seen from Fig. 1 and Fig. 2 that the
gap between the SDR upper bound and the average minimum SNR

achieved by the algorithms increases%éncreases:(: 0.4 dB for
K =25 N =25to~ 3.5dB forK = 500, N = 25 for the MU-
SLA algorithm in Fig. 1; andv 0.5 dB for K = 500, N = 150 to
~ 3.2 dB forK = 500, N = 25 for MU-SLA algorithm in Fig. 2).
This behavior is in concurrence with the results on multicapac-
ity in [11]: it is difficult to attain a high SNR for all the useasK

Fig. 2. Comparison of average minimum SNR and average com-
putational time versus number of antennag for a) MU / AU, b)
MU-SLA, c) SLA, d) Lozano with Lopez initialization, €) QR) f
SDR with 1000 Gaussian randomizations, and g) SDR upper bound
for K =500 users.

increases relative t& when the corresponding channels are drawn

from an i.i.d. zero-mean complex Gaussian distributiorscAt can
be seen that the minimum SNR increasestaslecreases because
the Tx has more degrees of freedom at its disposal using vitigh
able to select better transmit beamforming vectors thatrektigher
minimum SNR.

5. CONCLUSION

In this paper, we considered the transmit beamforming prolfor a
single group multicast cell and proposed novel low-comipfedap-
tive algorithms, namely the AU algorithm, the MU algorithamd
the MU-SLA algorithm. These new algorithms attain very favo
able performance - complexity trade-offs. MU-SLA outpenfis
all other available algorithms for multicast beamformiigsluding
SDR and SLA; while MU / AU are close to SLA, which was the

previous state-of-art method in terms of attaining the agjmini-
mum SNR / multicast rate. This is quite remarkable given tve |
complexity of MU / AU, and even MU-SLA, as compared to SLA
and SDR, and the fact that multicast beamforming is NP-hevd.
proved that AU is guaranteed to converge via an interestimgtbd
proportional fairness, also exploiting very recent resah the con-
vergence of successive convex approximation for certgiesyof
non-convex problems.
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