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ABSTRACT

For automatic speech recognition (ASR) systems it is important that
the input signal mainly contains the desired speech signal. For a
compact arrangement, differential microphone arrays (DMAs) are a
suitable choice as front-end of ASR systems. The limiting factor of
DMAs is the white noise gain, which can be treated by the minimum
norm solution (MNS). In this paper, we introduce the first time the
MNS to adaptive differential microphone arrays. We compare its ef-
fect to the conventional implementation when used as front-end of
an ASR system. In experiments we show that the proposed algo-
rithms consistently increase the word accuracy up to 50 % relative
to their conventional implementations. For PESQ we achieve an im-
provement of up to 0.1 points.

Index Terms— beamforming, differential microphone arrays
(DMAs), automatic speech recognition (ASR), microelectromechan-
ical systems (MEMS) microphones

1. INTRODUCTION

Voice recording is a simple task that can be achieved by means of a
single directional microphone. The use of a uni-directional micro-
phone is not always satisfactory, since every 4 - 5 dB improvement of
the SNR may raise the speech intelligibility by 50 % [1]. In realistic
scenarios, the captured signal consists of a desired speech signal and
other interfering signals, e.g. music, speech, noise, etc. In this work
we consider a system that is able to record the target speaker and
to simultaneously suppress interfering sources. This can be realized
by means of microphone arrays and beamforming algorithms. For a
compact arrangement and limited resources, differential microphone
arrays (DMAs) can be used.

The usage of adaptive differential microphone arrays (ADMAs)
is limited by the so called white noise gain [2], which renders
second- and higher-order implementations impractical. The authors
of [2] present the minimum-norm solution (MNS) for DMAs, which
features a higher robustness against the white noise gain. However,
to the best of our knowledge, MNS has never been used in AD-
MAs, and the effect on ASR is not investigated. In this paper we
apply the MNS in ADMAs and compare them with the conventional
implementations, used as a front-end for an ASR system. In our
experiments we consider close-talking speaker scenarios in a rever-
berant environment with up to three interferer and SNR values from
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-6 dB to 12 dB. Not surprising, ADMAs show a clear and consistent
improvement over a single omnidirectional microphone in terms
of perceptual evaluation of speech quality (PESQ) and word accu-
racy rates (WAcc). Furthermore, ADMAs with MNS consistently
outperform the conventional implementation.

The paper is organized as follows. Sections 2 and 3 present the
theory of the algorithms and Section 4 describes their implementa-
tion. Section 5 gives an overview on the recordings that were made
for the evaluation of the algorithms and Section 6 presents the re-
sults. Section 7 concludes the paper.

2. ADAPTIVE DMAS

References [3] and [4] present the realization of a DMA with vari-
able beamformers. These beamformers are suppressing the interfer-

Fig. 1. Schematic implementation of an ADMA.M . . . number of mi-
crophones, N . . . Order of the DMA. cn(t) . . . output signal of fixed
beamformer.

ing sources by directly nullforming towards the corresponding direc-
tions. The adaptive beamformer combines the output signals of the
fixed beamformer to obtain the final beamformer output. Figure 1
shows the schematic implementation.

2.1. First-Order ADMA

The conventional first-order-implementation of the ADMA [3] needs
M = N +1 = 2 microphones. The fixed beamformer combines the
microphone signals to form its output signals. The frequency and
angular dependent responses of the fixed beamformer are

C1(ω, θ) =
[
1 e−jωτ0 cos θ

] [ 1
−e−jωτ0

]
S(ω) (1)

C2(ω, θ) =
[
1 e−jωτ0 cos θ

] [−e−jωτ0
1

]
S(ω), (2)

where S(ω) is the spectrum of the signal source, ω is the angu-
lar frequency, θ is the azimuthal angle and τ0 = δ/c is the delay
with the speed of sound c and the microphone distance δ (cf. Fig.
2(a)). The approximate speed of sound in dry (0% humidity) air is
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c = (331.1 + 0.0606ϑ), where ϑ is the temperature in degrees Cel-
sius (◦C). These signals are adaptively combined to obtain the final
beamformer output signal. The beamformer output normalized by
the input spectrum S(ω) is∣∣∣∣Y (ω, θ)

S(ω)

∣∣∣∣ = |(C1(ω, θ)− βC2(ω, θ))HL(ω)| , (3)

where β is a real constant and HL(ω) the compensation filter. The
resulting beam pattern depends on the value of β, ranging between
0 ≤ β ≤ 1. The NLMS-algorithm updates the value of β. The
update equation written in the time-domain is

βt+1 = βt + µ
y(t)c2(t)

‖c2(t)2‖+ ∆
, (4)

with the step-size µ and the regularization parameter ∆. Figure 2(b)
depicts the beam pattern of the beamformer output for different val-
ues of β.
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Fig. 2. Beam patterns of the first-order ADMA: (a) Fixed beam-
former outputs; (b) Beamformer output for different values of β.

2.2. Second-Order ADMA

The conventional second-order-implementation of the ADMA [4]
needs M = N + 1 = 3 microphones for the fixed beamformer. The
fixed beamformer provides three output signals. These three output
signals are adaptively combined to obtain the final beamformer out-
put. Figure 3 depicts the corresponding beam patterns. The second-
order ADMA is able to place two distinct zeros in the output beam
pattern (the first-order ADMA only one).
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Fig. 3. Beam patterns of the second-order ADMA: (a) Fixed beam-
former outputs; (b) Beamformer output for different values of β.

3. NOVEL ROBUST ADAPTIVE DMAS

3.1. Robust First-Order ADMA

Due to the compensation of the high-pass characteristics of DMAs (a
slope of 6 dB/octave for first-order DMAs) the so-called white noise
gain arises [2]. An approach to reduce the white noise gain is the
implementation with a microphone number M > N + 1. The au-
thors of [2] realize this with the minimum-norm solution. For a more

Fig. 4. Schematic implementation of the novel fixed beamformer of
a first-order ADMA with the minimum-norm solution.

robust implementation of the first-order ADMA we implement the
fixed beamformer with this approach. Figure 4 depicts the schematic
implementation for this novel fixed beamformer. The closed form
solution for the filter elements is

h(ω,α,β) = DT (ω,α)[D(ω,α)DT (ω,α)]−1β, (5)

where DT (ω,α) is the constraint matrix of size M × (N + 1) and
the design vectors α and β. The parameters to design a first-order
cardioid are:

α =
[
1 −1

]T
, (6)

β =
[
1 0

]T
. (7)

The constraint matrix for M = 4 microphones is

D(ω,α) =

[
1 e−jωτ0 e−j2ωτ0 e−j3ωτ0

1 ejωτ0 ej2ωτ0 ej3ωτ0

]
. (8)

We obtain the solution for the filter vector h(ω,α,β) by solving
Eq. 5.

3.2. Robust Second-Order ADMA

The second-order DMA (M = 3) features a high-pass characteris-
tic with a slope of 12 dB/octave that has to be compensated. This
entails a stronger amplification of the white noise compared to the
first-order DMA. Figure 5 shows the schematic implementation of
the novel fixed beamformer for a second-order ADMA with the
minimum-norm solution. In the first stage we apply two first-order
ADMA fixed beamformer for M − 1 microphones (cf. Fig. 4). In
the second stage we consider three conventional first-order DMAs to
form the three fixed beamformers’ output signals. For further details
see [5].

Fig. 5. Schematic implementation of the novel fixed beamformer of
a second-order ADMA with the minimum-norm solution.
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3.3. Robust First/Second-Order Hybrid ADMA

Although the MNS, applied for the second-order ADMA, entails an
enhancement regarding the white noise gain, the amplification in the
low frequency range is still too high for a real usage. An approach
that allows to utilize a second-order ADMA in real applications is
a hybrid version in combination with a first-order ADMA [6]. A
first-order ADMA (with M − 1 microphones) operates in the low
frequency range and above the transition frequency ft operates a
second-order ADMA.

4. IMPLEMENTATION

We investigated the following implementations of the ADMAs:

• First-order ADMA (M = 2)
• Robust first-order ADMA (M = 4)
• First/second-order hybrid ADMA: (M = 3)
• Robust first/second-order hybrid ADMA (M = 5)

The implementation of each algorithm is based on block pro-
cessing with the overlap-add method and 50% overlapping. The used
window-type is Hanning and the sampling frequency fs = 48 kHz.
The frame size for the block-processing is 28 samples. The value
for the step-size is µ = 0.6 and the regularization constant is ∆ =
10−4. The compensation filter features an amplification of infinity
at f = 0 Hz; thus, the first frequency pin for the designed filter is set
to zero.

For the first-/second-order hybrid ADMA (M = 3) the transi-
tion frequency is ft = 1850 Hz, and for the robust first-/second-
order hybrid ADMA (M = 5) it is ft = 1050 Hz.

5. RECORDINGS

For the design of DMAs the microphone distance has to be very
small. No speech-corpus is available for this microphone array
setup. Therefore, we designed a small linear microphone array. We
investigated the performance of the algorithms in a small confer-
ence room. We simulated different realistic scenarios with a target
speaker and up to three interfering speakers.

5.1. Recording Environment

The recordings took place in a small conference room (5.99×5.33×
3.13 m) at the Signal Processing and Speech Communication Lab-
oratory (SPSC Lab) at the TU Graz. The temperature in the room
varied during the recordings between ϑ = 31◦C and ϑ = 33◦C.
We placed the microphone array at the center of the room and sur-
rounded it by four loudspeakers, distributed on a circle with a radius
of r = 1 m (see Fig. 6). The height of the top of the microphone
array with respect to the floor is hMA = 1, 25 m. We mounted
the loudspeakers on a height of hLS = 1, 21 m, measured from
their bottom. The first loudspeaker (LS1) is acting as the target
speaker and the rest as interfering speakers coming from different
directions. As a reference for the sound pressure level we adjusted
the loudspeakers to reach an A-weighted equivalent sound level of
LAeq = 80 dB by playing back white Gaussian noise.

5.2. Recording Equipment

The playback setup consists of Yamaha MSP5 Studio Loudspeak-
ers connected with the audio interface Focusrite Liquid Saffire 56.
For playback and recording we used the real-time graphical dataflow
programming environment PureData.

Fig. 6. Recording setup.

The MP34DT01 are omnidirectional, digital MEMS micro-
phones with a size of 3× 4× 1 mm. They exhibit a frequency range
of 20 Hz to 16000 Hz and feature a SNR of 63 dB. Up to eight
microphones are operating on the STM32 MEMS microphones
application board.

We mounted the microphones on a microphone array grid with
the dimensions 9.7× 4.8× 0.5 cm. The distance between two adja-
cent microphones of the linear microphone array is δ = 2.14 cm.

5.3. Playback

We generated the playback signals with MATLAB. For each sce-
nario we generated four 4-channel WAVE files, each with a different
SNR (-6dB, 0 dB, 6 dB and 12 dB). The target speaker signal con-
sists of a sequence of German commands from the male speaker 001
of the GRASS corpus [7]. Within one minute we played back 24
commands. The target speaker is present in each scenario with the
same level. We played back the interfering speakers [7] from dif-
ferent direction (90◦, 135◦ and 180◦), whereas the target speaker
had a fixed position (0◦). Also the number of interfering speakers is
changing (# = 1, 2 and 3). Each scenario lasts one minute.

6. RESULTS

We evalueted the performance of the ADMAs by means of the PESQ
and ASR Word Accuracy Rate (WAcc). For the estimation of the
WAcc, a short description of the ASR engine follows.

6.1. Speech Database

The training material consists of a clean training set, i.e. without
reverberation. This contains 5046 isolated utterances corresponding
to 55 male and female speakers: 19 GRASS [7] speakers (with dif-
ferent commands, keywords, and read sentences than in the test set)
and 36 PHONDAT-1 [8] speakers. We mixed two databases to make
the recognition more robust to speaker variation. The training sets
include the speaker 001 [7].

6.2. ASR Engine

The front-end and the back-end of the ASR Engine are HTK-based
recognizers [9, 10]. This recognizer is appropriate for a medium
vocabulary size. The front-end takes the enhanced signal and ob-
tains mel frequency cepstrum coefficients (MFCCs) using: 16 kHz
sampling frequency, frame shift and length of 10 and 32ms, 1024
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Fig. 7. Results for different scenarios and SNR values: (a - c) WAcc, (d - f) PESQ.
Legend: -∗- Single omnidirectional microphone; -×- First-order ADMA (M = 2); -+- Robust first-order ADMA (MNS: M = 4); -�-
First/second-order hybrid ADMA (M = 3); -�- Robust fist/second-order hybrid ADMA (M = 5).

frequency bins, 26 mel channels and 13 cepstral coefficients with
cepstral mean normalization. We also append delta and delta-delta
features, obtaining a final feature vector with 39 components. The
back-end employs a transcription of the training corpus based on 34
monophones to train triphone-HMMs. We model each triphone by
a HMM of 6 states and 8 Gaussian-mixtures per state. The lexi-
con is a set of 295 words derived from the German commands of
the GRASS corpus [7]. We train a general bigram using these com-
mands. These commands include some of the 24 test utterances. We
train the HMMs with the center microphone signal of the training set
without any enhancement.

6.3. Evaluation

Figure 7 shows the results for the PESQ and the WAcc. We evaluate
the measures for scenarios with up to three interfering speakers and
different SNR values.

We see that for every scenario and SNR condition all ADMAs
increase the WAcc (cf. Fig. 7(a-c)) compared to a single omnidi-
rectional microphone front-end. With the robust implementations of
the ADMAs we achieve an improvement of up to 50% compared to
their conventional implementations. In addition to suppressing the
interfering signals, the ADMAs dereverberate the target signal and
therefore also reduce the miss-match between training and test data.
For the evaluation with the PESQ (cf. Fig. 7(d-f)) we observe a sim-

ilar behaviour as for the WAcc. With the robust ADMAs we achieve
an improvement of up to 0.1 points compared to the converntional
ADMAs.

Looking at the different ADMA implementations, we see that
the robust first/second-order hybrid ADMA (M = 5) gives the best
results for most scenarios.

7. CONCLUSIONS

DMAs are a suitable front-end for an ASR system in close-talking
scenarios. Their compact arrangement makes them an interesting
alternative to conventional microphone arrays.

We conclude that for an ASR system with clean training used
in a reverberant environment, an ADMA can improve the WAcc
for every SNR condition. In this scenario, the novel robust im-
plementations outperform the conventional ones, while the robust
first/second-order hybrid ADMA withM = 5 microphones yielding
the best results. With the used microphone distance of δ = 2.14 cm
between two adjacent microphones, for a linear microphone array
with up to M = 5 microphones, we still achieve a compact arrange-
ment.

As future work, we plan to investigate the effect of retraining the
ASR with ADMA processed material and combining noise reduction
algorithms with an ADMA.
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