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ABSTRACT 

 

This paper outlines novel approaches to design a new 

generation of distributed networks of acoustic sensors. The 

key-concept is marked by the use of time-frequency signal 

analysis tools directly embedded at the sensor node. The 

general framework for analysis at the acoustic sensor level is 

based on spectrogram which is very simple and easy to 

implement. The choice of the detection threshold in time-

frequency domain is always a difficult task, even more 

complicated in the embedded computing configurations where 

eventual threshold adaptive selection algorithms might not 

have the required complexity. That is, the performances in 

terms of probability of detection classification and localization 

accuracy are generally strongly depending of the operational 

conditions. As such, this paper proposes a novel approach of 

local signal processing based on phase coherence criterion, 

designed to track the time-frequency multi-components and 

which is implemented in a distributed network with a 

minimum number of acoustic sensors.  

Index Terms— distributed signal processing; time-

frequency analysis; acoustic source localization.  

 

1. INTRODUCTION 

 

The conventional acoustic sensing arrays are generally 

composed of recording sensors and a real-time or offline data 

processing center. Here, operations such as detection and 

localization of the acoustic sources are made. The sensors 

generally include some simple detection algorithms based on 

the maximum signal power over a local window criterion. In 

the case when an event is detected, the sensor enables the 

execution of the next processing stages: storage of data and 

parameter extraction, transmission, etc. [1], [2]  

While the signals transmitted by acoustic sources are 

generally non-stationary (for instance, acoustic signals 

generated by animals, underwater or aerial, sonar signals, 

etc.), the time-varying spectral analysis constitutes the major 

well-known technique to process them [3]. 

However, when computing a spectrogram (the most 

common time-frequency analysis tool), a time-frequency 

energy threshold must be set in order to detect the useful parts 

of the signals (in the time-frequency plane) that will be sent to 

the data processing center [7]. Despite the diversity of the 

interesting approaches of tracking using the spectrogram, the 

embedding of such approaches at a sensor level is always 

subjected to simplifications that reduce the required efficiency 

of the algorithms. Consequently, the signal processing at the 

sensor level is characterized by reduced performance, in terms 

of probability of detection vs. false alarm rate, with respect of 

the same algorithms that are not subject to embedding 

constraints.   

This paper aims to introduce an alternative method for 

extracting the time-frequency parameters using the local phase 

information. The difference with respect of spectrogram-based 

processing is the use of the local phase coherence that decides 

if a time-frequency region of the observed data corresponds to 

the noise or to a signal of interest [4], [5].  That is, we replace 

the maximum power over a local window to decide if we 

detect the signal or not with a new time-frequency method 

which tracks the instantaneous phase of the local content of 

the signal provided by the High Order Ambiguity Function 

(HAF).  

The tests performed for real data show the efficiency of 

this approach, with respect of the spectrogram-based 

approaches. From the implementing point of view, the 

proposed method has an attractive low complexity that makes 

it comparable with the existing embedded algorithms.    

The paper is organized as follows. Some general aspects 

about the use of the time-frequency analysis in the context of 

the detection in distributed sensing array are discussed in the 

Section 2. Here, the proposed local phase-based tracking 

algorithm is compared to the generally used energetic-based 

tracking algorithm. In Section 3, the general features of the 

proposed distributed sensing array are presented and the 

global detection approach is described. Finally, the results 

obtained in some experimental underwater tests are presented 

in the Section 4. The Section 5 concludes with the theoretical 

and practical arguments for future developments. 
 

2. TIME-FREQUENCY ANALYSIS IN DISTRIBUTED 

SENSING 

 

2.1. The spectrogram method 

 

       In the context of distributed sensing of non-stationary 

signals, the time-frequency analysis offers the natural tool to 

deal with them. The most used methods are based on the 
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spectrogram and the signal’s detection and parameter 

extractions are done by thresholding the time-frequency 

energy.  

 From a mathematic point of view, for each analyzing 

window Wi, time-frequency coordinates belonging to the 

useful parts of the signals, or “tokens”, are sent to the center of 

data processing (1). 
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where S(t,f) is the spectrogram of the signal, defined as  
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where x is the analyzed signal, h is the analysis window of size 

Wi, ol is the overlapping ratio and N is the number of FFT 

points. The choice of the constant time-frequency energy 

threshold α is very sensible to the nonlinear nature of the 

frequency estimation for sufficiently low signal-to-noise ratio 

(SNR) signals.  

 

2.2. The high order ambiguity function based method 

 

       In order to reduce the sensitivity of the energy 

thresholding in the detection of the useful parts of the signal, 

we define the phase-coherence criterion for analyzing the 

time-frequency signature of an acoustic source is. This 

approach consists of estimating the polynomial phase form of 

a signal by applying the HAF algorithm over the local window 

of analysis. The mathematical modeling of a polynomial-

phase signal (PPS) of the order 2 into a Linear Frequency 

Model (LFM) representation is described below. 

 For each window Wk of the signal s(t), the local LFMs that 

fit the best the local signal’s time-frequency behavior are 

estimated. For this purpose, the ambiguity function (AF) given 

by formula (3) is used. 
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where τ is the lag used for the AF computation. The chirp rate 

of the LFM that approximates the signal x is computed as: 
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 Once the chirp rate of the LFM is estimated, the 

demodulation operation will yield to a tone-like signal whose 

frequency (the central frequency of the LFM that locally 

models the signal) can be directly estimated by applying the 

Fourier transform.  

 This procedure of local window analysis is applied for the 

LFM in each local window, so, for the k
th

 analyzed windows 

W, the received signals in two overlapped windows are 

modeled locally as:  
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 Therefore, in order to be a useful signal, the two modeled 

LFM in (5) must be localized in the same time-frequency 

region on the signal spectrogram. This is the condition to 

transmit the corresponding LFM parameters to the center-level 

processing. If this similarity is not respected, the LFMs are 

considered to fit noisy parts of the acquired signal, so there 

will be no transmission further on. Mathematically, the 

detection based on the local time-frequency coherence is 

defined as: 
 

    sentcccccc kkkkkk ),(,,, ,2,11,21,1,2,1         (6) 

 

The relation (6) is translated by the fact that the detection 

successfully takes place if the Euclidian distance between the 

set of two coefficients estimated in two adjacent time windows 

is inferior to a threshold β.   

 
 

 
Fig. 1. Flowchart of the local detection by one network node composed by 4 sensors. 
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Fig. 2. Flowchart of the signal processing stages during one single cycle of the distributed network of acoustic sensors. The stages desribed in this paper are 

emphasized within the red color boxes.

3. OVERVIEW OF THE DISTRIBUTED NETWORK 

 

3.1. Local distributed signal processing 

 

As the “operational part” of the network, the sensors cover 

the area of interest, according to the operational purposes – 

detection, localization and tracking of the sources. The key 

element of each sensor is the embedded processing algorithm 

that allows the detection of a signal of interest and the 

extraction of the parameters describing the signal in an 

analysis window W. 

 The approach of using the time-frequency coherence-based 

method, already described in the Section 2.2, is to divide the 

signal in N windows and look over each local window for the 

local LFMs that fit the best the local signal’s time-frequency 

behavior. The pair value (coefficient, time) which models the 

LFM is then grouped into the token of the kth window. The 

condition that a “token” (7) is transmitted to the center of data 

processing is based on local coherence of the signals from two 

overlapped windows. 
 

 kk ccTok 21                                      (7)   
 

Therefore, one can observe that the detection method 

consists of, instead using an energetic threshold as in the case 

of the spectrogram-based technique, but studying if the local 

LFMs xk and xk+1 are in the same time-frequency region or not. 

 

3.2. Global distributed signal processing 

  

      The functionalities of the sensing array are distributed 

between sensors and the center of the data processing. The key 

features of the applied signal processing in the design of the 

distributed network are synthetized in the flowchart of the Fig. 

2. The center of data processing collects the tokens from 

which it reconstructs the instantaneous frequency law for each 

sensor, in a single local window W, as it is indicated in the 

formula (8).  
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 After that, the IFL of each local window are merged in 

order to get a global IFL and to be used in the global detection 

part. Using the IFLs of all combinations of two sensors, the 

cross-correlations of IFLs are computed (9). 
 

         dttIFLtIFLtIFLtIFLR nmnmmn    ,       (9) 
 

where  nmNnm sensors  ,...1, . The global detection uses 

both the amplitude and the duration of the correlation between 

IFLn and IFLm of the sensors n and, respectively, m. Thus, the 

first test of global detection uses a trust index for detection 

formulated in (10). 
 

 MN gd                                      (10) 

where  mnRM   is the maximum of cross-correlation 

amplitude in a local window, 
gdN is the number of good 

detections and  is a threshold set to 0.8 during the tests.  

 The second test of global detection makes use of the 

duration of the  mnR , as shown in the formula of (11). 
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 In the formula (11), the threshold is set to 0.5 during the 

tests. Therefore, if the conditions (10)-(11) are successfully 

achieved, then an event is globally detected and recognized by 

center of data processing and so it continues its computations 

for the localization and classification parts. 
 

3.3. Acoustic localization 

 

 The cross-correlation between the every possible pair of 

sensors is computed is used to compute time delay of arrival 

(TDOA) as it is given by the formula (12). Therefore, three 

TDOA are obtained which it is enough to estimate a bi-

dimensional spatial localization of acoustic source. 
 

 


mnmn RTDOA maxarg                (12) 

 

where TDOAmn is the time delay of arrival between the mth and 

the nth sensor. 

 Then, the localization algorithm is implemented by simply 

applying a Maximum Likelihood Estimator (MLE) for the 

Minimum Least Square Error problem, as in [6].  

   

4. EXPERIMENTAL VALIDATION 

 
In order to study the operational interest of the proposed 

method, multiple experiments were conducted in sea trials. 

The underwater experiments were conducted on a distributed 

network contains three nodes, each of them with four 

vertically positioned sensors (hydrophones), and one PC  

acting as a center of data processing and data collector (CP).
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Fig. 3a-c. The signals used during the tests IV and the instantaneous frequency laws estimated with the time-frequency-phase approach: The signal during the 

tests: a. a 3-component signal and b. a longer 2-component signal; c. The positions of sensors; d. The error ellipses based on the Cramer-Rao bound of the ML 

estimator of the localization algorithm used in the experiments. 
 

 
Fig. 4. Localization results during the emission of the waveform pictured in the figure 9a-c, for three types of trajectories: a. The source is static and  emits 

3-compoenents frequency modulated signals (dolphins’ signals); b. The source took a tour of the sensor’s perimeter static and  emits 3-compoenents 

frequency modulated signals; c. The source is static and  emits 2-compoenents frequency modulated signals (mammals’ signals); 

 

Acoustic emissions were made from a boat describing 

multiple trajectories in the perimeter of the sensors. Each 

hydrophone was equipped with pre-amplifying blocks with 

40 dB the gain and DSP acquiring data with a sampling 

frequency of 100 kHz. Frequencies between 1.3 kHz and 

48.8 kHz were selected using a band pass filter.  

The spectrograms of the signal classes emitted during 

experiments are shown in the Fig. 3a-b and they represent: 

- a 3-components quadratic frequency modulation (Fig. 

3a), in the bands 16-10 kHz, 12-8 kHz and 8-4 kHz; 

- a 2-component signal simulating a cetacean vocalization 

plus one more frequency-shifted reflection, in the bands 16-

8 kHz and 16-20 kHz, (Fig. 3b). 

The HAF algorithm uses 10 lags and it is designed to 

track a single time-frequency component by searching the 

best linear frequency modulations approximation within the 

local overlapping region.  

The GPS trajectory positions described by the moving 

source are used to compute the averaged relative errors, 

presented in the Table I. The estimated trajectories by using 

the TDOA algorithm for localization are illustrated in the 

figures 4a-c. A higher error precision of localization, 

compared to the results of the matched filter, is observed for 

the local-phase coherence, algorithm explained mainly by 

the lack of informations about the signal’s source. 
 

    TABLE I    SOURCE LOCALIZATION AVERAGE PERFORMANCE [%] 

Configuration 
Time-Frequency-

Phase method 

Matched 

Filtering 

Static position & 3-component signal 12,1% 0,8% 

Triangle & 3-component signal 9,5% 1% 

Static position & 2-component signal 7% 1% 

   

      Noise interference related errors are reduced due to the 

distinct shape of the signal’s time-frequency content, as well 

as careful filtering and/or additional processing. 

 

5. CONCLUSIONS 
 

      This paper addresses the problem of distributed 

processing in the context of acoustic sensor networks aimed 

to detect and to localize an unknown moving source. The 

classic approach based on local spectral analysis has been 

compared with a new concept that is based on the time-

frequency information extraction that exploits the continuity 

of the received signal in the time-frequency plane. The 

results obtained for real data proved the benefits in terms of 

operational performances such as detection and localization.  

In addition, the time-frequency coherence makes a more 

relaxed assumption than the spectrogram: we look for linear 

time-frequency components rather than stationary ones, 

which allows us using longer windows than the 

spectrogram. Beside the quality of estimators that is 

improved, this fact conducts to a higher local compression 

ratio which reduces the quantity of information that we need 

to send from sensors to the center of data processing. Such 

property is helpful for ensuring autonomy and this aspect 

will be one of our further goal. In addition, the improvement 

of implementation in distributed configurations as well as 

the definition of algorithms for an improved localization and 

classification will be also part of our future work directions. 
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