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ABSTRACT

Speech enhancement with distributed arrays has been met with var-
ious methods. On the one hand, data independent methods require
information about the position of sensors, so they are not suitable
for dynamic geometries. On the other hand, Wiener-based meth-
ods cannot assure a distortionless output. This paper proposes min-
imum variance distortionless response filtering based on multichan-
nel pseudo-coherence for speech enhancement with ad hoc micro-
phone arrays. This method requires neither position information nor
control of the trade-off used in the distortion weighted methods. Fur-
thermore, certain performance criteria are derived in terms of the
pseudo-coherence vector, and the method is compared with the mul-
tichannel Wiener filter. Evaluation shows the suitability of the pro-
posed method in terms of noise reduction with minimum distortion
in ad hoc scenarios.

Index Terms— Noise reduction, speech enhancement, dis-
tributed microphone array, STFT domain, MVDR filter

1. INTRODUCTION

Enhancing the quality of speech has been a signal processing re-
search interest for decades. This interest focuses mostly on extract-
ing the speech signal from a mixture of desired and unwanted sig-
nals. The unwanted part of this mixture may include competing
speech, reverberant sound, and noise. Although noise reduction for
the purpose of speech enhancement may be seen as an easy task
compared to source separation and dereverberation, it is still a chal-
lenge. This is mainly because reducing the noise does not guarantee
an improved intelligibility of desired speech since noise reduction
techniques may introduce distortion in speech signals [1, 2, 3].

In the recent years, distributed microphone arrays have been
widely used to tackle the speech enhancement problem [4, 5, 6],
mostly in fully connected scenarios [7, 8, 9], and sometimes with
multiple sources [10]. Node-specific and common constraints have
been also utilized [11, 12]. One characteristic of distributed mi-
crophone arrays is randomness and dynamicity in the position of
microphones. Recently, the performance of the Speech Distortion
Weighted Multichannel Wiener Filter (SDW-MWF) was analyzed
for randomly located microphones using a uniform distribution [13].
The reliability function derived for such a scenario showed the lim-
itations of applying SDW-MWF to randomly located microphones.
Proposal of the clustered blind beamforming was one of the efforts
to take randomness into account. In their work, Himawan et al. [14]
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used a clustering approach to group the randomly located micro-
phones into localized clusters, which were then ranked according
to their relative distance from the speaker. They compared cluster-
based algorithms to the full set of microphones within different ad
hoc array geometries. Unfortunately, cluster-based methods lack
an explicit metric to show that their solutions are optimal in some
sense. Recently, ad hoc microphone arrays have been studied in a
close-talking scenario. A beamforming method based on a soft time-
frequency activity mask is proposed in this paper. It has been shown
that the proposed beamforming method is suboptimal but close to a
centralized beamforming [15].

This paper proposes blind speech enhancement methods that
are formed to act explicitly optimally with randomly positioned dis-
tributed microphone arrays, namely ad hoc microphone arrays. The
aim is to answer the question when and how different beamform-
ing techniques should be used in ad hoc scenarios. The methods are
inspired by the recently proposed, single-/multi-channel, enhance-
ment methods in [16, 17]. These methods exploit an orthogonal de-
composition of the desired signal, which are then modeled using the
pseudo-coherence vector. Herein, we use the pseudo-coherence vec-
tor to model the multichannel data obtained using the distributed mi-
crophone arrays. This enables us to obtain distortionless beamform-
ing that is generally not the case for the Wiener-type beamformers
for distributed microphone arrays.

The remainder of this paper is organized as follows. First, the
problem of interest is defined in Section 2 by formulating the signal
model and the pseudo-coherence vector along with an ad hoc micro-
phone array. Before proposing beamforming methods suitable for
ad hoc microphone arrays in Section 4, we present selection crite-
ria based on the pseudo-coherence vector in Section 3. We derive
and characterize the proposed generalized beamformer on the basis
of the pseudo-coherence vector. In Section 5, we present experi-
mental results based on Monte-Carlo simulations. Finally, Section 6
presents a discussion of the results in Section 5.

2. PROBLEM FORMULATION

In this paper, we consider the case of a distributed (ad hoc) micro-
phone array in a reverberant acoustic environment. We assume that
N identical microphone arrays are distributed randomly. We also as-
sume that each array consists ofM omnidirectional microphones. In
this environment, the ad hoc sensor arrays capture a desired convo-
luted speech source signal in some noise field. The signal picked up
by themth microphone of the nth array can be expressed as [18, 19]

yn,m(t′) = xn,m(t′) + vn,m(t′), (1)
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where xn,m(t′) = gn,m(t′) ∗ s(t′), s(t′) is the speech signal at
time t′, gn,m(t′) is the acoustic impulse response from the source
location to the mth microphone of the nth array, and vn,m(t′) is
the additive noise to the microphone m of array n. We assume that
the acoustic impulse responses are time invariant. Also xn,m(t′)
and vn,m(t′) are assumed to be uncorrelated, zero mean, stationary,
real, and broadband. Moreover, our assumption is that the convolved
speech signals xn,m(t′) are coherent across all microphones in the
ad hoc array while the noise signal vn,m(t′) is only partially coher-
ent across the microphone arrays.

Without loss of generality, we can assign the clean (but con-
voluted) signal at the first microphone of each array, namely
x1,1(t

′), x2,1(t
′), ..., xN,1(t

′), as the reference signal for that ar-
ray. Many fundamental questions arise in the context of distributed
(ad hoc) microphone arrays. Which one of these references should
be estimated? Which one is the best and in what sense? How can
distributed arrays help in the estimation? In the rest of this section,
we formulate the problem in a way that allows us to answer these
fundamental questions.

Assuming a sufficiently long analysis window, taking the STFT
from (1) yields

Yn,m(k, t) = Xn,m(k, t) + Vn,m(k, t), (2)

where Xn,m = Gn,m(k, t)S(k, t), k ∈ {0, ..K − 1} specifies the
frequency bin, and t is the time frame index.

By stacking STFT-domain signals of M microphones at the nth
array, we can write

yn(k, t) = gn(k)S(k, t) + vn(k, t) = xn(k) + vn(k, t)

= dn(k)Xn,1(k, t) + vn(k, t), (3)

where yn(k, t), vn(k, t), xn(k, t) are stacked versions of the re-
spective STFT-domain signals, gn(k) = [Gn,1(k), ..., Gn,M (k)]T ,
dn(k) =

gn(k)
Gn,1(k)

, and the transcript T denotes the transpose opera-
tor. Here, it is assumed that Gn,1(k) 6= 0. Expression (3) depends
explicitly on the reference signal, Xn,1(k, t); as a result, (3) is the
STFT-domain signal model for noise reduction. The vector dn(k)
is obviously the STFT-domain steering vector for noise reduction
corresponding to the nth array.

It can be verified [20] that a more interesting way to write (3) is

yn(k, t) = ρxnXn,1
(k, t)Xn,1(k, t) + vn(k, t), (4)

ρxnXn,1
(k, t) =

E
[
xn(k, t)X

∗
n,1(k, t)

]
E [|Xn,1(k, t)|2]

≈ dn(k) (5)

where ρxnXn,1
(k, t) is the pseudo-coherence vector of length M

between xn(k, t) and Xn,1(k, t), with E[· ] and ∗ denoting mathe-
matical expectation and complex conjugate.

The equality ρxnXn,1
(k, t) = dn(k) holds only when the anal-

ysis window of the STFT is infinitely long. However, (4) is much
more useful than (3) since the pseudo-coherence vector captures
much better the acoustic environment than the STFT-domain steer-
ing vector, especially in the context of ad hoc microphone arrays.
Therefore, in the following, the given model in (4) will only be used.

As indicated earlier in this section, one fundamental question
regarding speech enhancement with ad hoc microphone arrays is to
select one of the reference signals from the set of N reference sig-
nals, i.e. {X1,1, X2,1, ..., XN,1}. Assuming that Xnr,1(k, t) is the
selected reference signal, in theory it is always possible to write (4)

as a function of this selected reference signal as

yn(k, t) = ρxnXnr,1
(k, t)Xnr,1(k, t) + vn(k, t), (6)

ρxnXnr,1
(k, t) =

E
[
xn(k, t)X

∗
nr,1(k, t)

]
E [|Xnr,1(k, t)|2]

, (7)

where ρxnXnr,1
(k, t) is the pseudo-coherence vector (of length M )

between xn(k, t) and the reference signal Xnr,1(k, t).
From (3) and (4), we deduce that the correlation matrix of

yn(k, t) is

Φyn(k, t) = Φxn(k, t) + Φvn(k, t), (8)

where Φxn(k, t) = φXnr,1(k, t)ρxnXnr,1
(k, t)ρH

xnXnr,1
(k, t) is

the rank 1 correlation matrix of xn(k, t) and Φvn(k, t) is the noise
correlation matrix (which rank is assumed to be M ).

3. SELECTION CRITERIA

In the following subsections, we define relevant selection criteria for
designing distributed beamformers.

3.1. The Norm of The Pseudo-Coherence Vector

The pseudo-coherence vector, ρxnXn,1
(k, t), tells us how much

Xn,1(k, t) is coherent with the other convolved speech signals
Xn,i(k, t), i = 2, ...,M of the nth array. Let us define the quantity:

ℵn(k, t) = ||ρxnXn,1
(k, t)||22. (9)

We always have ℵn(k, t) ≥ 1. The worst scenario is when ℵn(k, t)
is close to 1, which means that array n captures almost no speech. It
is clear that for two arrays i and j, a value of ℵi(k, t) greater than a
value of ℵj(k, t) means that the speech source is closer to the array
i than the array j. As a result, we should try to recover Xi,1(k, t)
rather than Xn,1(k, t). We deduce that the desired signal that we
should estimate or recover is Xnr,1(k, t), where nr is chosen to
maximize ℵn(k, t). It is of great importance to quantify how much
the arrays (other than the one containing the reference signal, i.e.,
nr) can contribute to noise reduction. For that, we can define the
quantity

ℵn,nr (k, t) = ||ρxnXnr,1
(k, t)||22. (10)

We always have 0 ≤ ℵn,nr (k, t) ≤ ℵnr (k, t). The worst scenario is
when ℵn,nr (k, t) is close to zero, which means that array nwill have
little or no positive contribution in the estimation ofXnr,1(k, t). The
measure in (10) tells us how much array n can “hear” the reference
signal, Xnr,1(k, t).

3.2. The Input SNR

One fundamental measure in noise reduction is the averaged (nar-
rowband) input signal-to-noise ratio (SNR) at the nth array, which is
obtained from (8):

iSNRn(k, t) =
tr [Φxn(k, t)]

tr [Φvn(k, t)]
=
ℵn(k, t)φXn,1(k, t)

tr [Φvn(k, t)]
, (11)

where tr[· ] denotes the trace of a square matrix.
Another interesting way to choose the reference signal is the

following:
n′r = argmax

n
iSNRn(k, t). (12)
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In this case, we estimate Xn′
r,1

(k, t). In theory, (11) can also be
rewritten as

iSNRn,n′
r
(k, t) = ℵn,n′

r
(k, t)

φXn′
r,1

(k, t)

tr [Φvn(k, t)]
, (13)

where φXn′
r,1

(k, t) is the variance of Xn′
r,1

(k, t).
The averaged (narrowband) input SNR with all the distributed

arrays is defined as

iSNR(k, t) =

∑N
n=1 ℵn(k, t)φXn,1(k, t)∑N

n=1 tr [Φvn(k, t)]
≤ iSNRn′

r
(k, t). (14)

4. PSEUDO-COHERENCE-BASED BEAMFORMING

In this section, we consider the conventional MVDR beamformer
[21], [22] for noise reduction. As can be expected, there are different
ways to perform beamforming, depending on the criteria discussed
in the previous section.

4.1. Beamforming with Best Input SNR Array

In this subsection, we select the array with the best input SNR, i.e.,
n′r obtained from (12), and all the other arrays are just ignored. In
this case, the beamformer output is Z(k, t) = hH

n′
r
(k, t)yn′

r
(k, t),

where hn′
r
(k, t) is a complex filter of length M containing all the

complex gains applied to the microphone outputs of the array n′r at
frequency bin k and time frame t.

By minimizing the variance of the beamformer output Z(k, t)
with the distortionless constraint, hn′

r
(k, t)ρxn′

r
Xn′

r,1
(k, t) = 1,

we easily find the MVDR filter:

hn′
r
(k, t) =

Φ−1
yn′

r
(k, t)ρxn′

r
Xn′

r,1
(k, t)

ρH
xn′

r
Xn′

r,1
(k, t)Φ−1

yn′
r
(k, t)ρxn′

r
Xn′

r,1
(k, t)

. (15)

Obviously, we can also write the MVDR filter as

hn′
r
(k, t) =

Φ−1
vn′

r
(k, t)ρxn′

r
Xn′

r,1
(k, t)

ρH
xn′

r
Xn′

r,1
(k, t)Φ−1

vn′
r
(k, t)ρxn′

r
Xn′

r,1
(k, t)

. (16)

The (narrowband) output SNR of this beamformer is defined as

oSNR
[
hn′

r
(k, t)

]
=

φXn′
r,1

(k, t)

hH
n′
r
(k, t)Φvn′

r
(k, t)hn′

r
(k, t)

. (17)

We deduce that the (narrowband) array gain is

A
[
hn′

r
(k, t)

]
= oSNR

[
hn′

r
(k, t)

]
iSNR−1

n′
r
(k, t) ≥ 1. (18)

4.2. Beamforming with All Distributed Arrays

If, from previous criteria, we consider that all the distributed arrays
can contribute to noise reduction, then they should all be used in
beamforming and this solution is the optimal one. It is assumed that
Xnr,1(k, t) is found to be the best reference signal.

The beamformer output is now Z(k, t) = hH(k, t)y(k, t),
where hH(k, t) is a complex filter of length MN containing all the
complex gains applied to the microphone outputs of all arrays at
frequency bin k and

y(k, t) =
[
yT
1 (k, t), ..., y

T
1 (k, t)

]T
= x(k, t) + v(k, t)

= ρx,Xnr,1
(k, t)Xnr,1(k, t) + v(k, t), (19)

with ρxnXnr,1
(k, t) = E

[
xn(k, t)X

∗
nr,1(k, t)

]
/E
[
|Xnr,1(k, t)|2

]
being the pseudo-coherence vector (of length MN ) between x(k, t)
and Xnr,1(k, t).

The minimization of the variance of Z(k, t) with distortionless
constraint, hH(k, t)ρxnXnr,1

(k, t) = 1, leads to the MVDR filter:

h(k, t) =
Φ−1

y(k,t)ρxXnr,1
(k, t)

ρH
xXnr,1

(k, t)Φ−1
y (k, t)ρxXnr,1

(k, t)
, (20)

where Φy(k,t) is the correlation matrix of y(k, t).
Then, the (narrowband) output SNR and (narrowband) array

gain are, respectively,

oSNR [h(k, t)] =
φXnr,1(k, t)

hH(k, t)Φv(k, t)h(k, t)
(21)

and A[h(k, t)] = oSNR[h(k, t)]iSNR−1
nr

(k, t) ≥ 1.

4.3. Beamforming with Best Output SNR Array

In this subsection, we apply N independent beamformers to the N
distributed arrays. We then select the beamformer that gives the best
(narrowband) output SNR. Therefore, the nth beamformer output is
Zn(k, t) = hH

n (k, t)yn(k, t), where hH
n (k, t) is a complex filter

of length M containing all the complex gains applied to the micro-
phone outputs of the array n at frequency bin k.

The MVDR filter is similar to the one derived in Section 4.1,
i.e.,

hn(k, t) =
Φ−1

yn
(k, t)ρxnXn,1

(k, t)

ρH
xnXn,1

(k, t)Φ−1
yn

(k, t)ρxnXn,1
(k, t)

. (22)

and the (narrowband) output SNR corresponding to hn(k, t) is

oSNR [hn(k, t)] =
φXn,1(k, t)

hH
n (k, t)Φvn(k, t)hn(k, t)

. (23)

Maximizing the output SNR with respect to the array index gives us
the solution we are looking for, i.e., hnr (k, t). We deduce that the
(narrowband) array gain for this method is

A[hnr (k, t)] = oSNR[hnr (k, t)]iSNR−1
nr

(k, t) ≥ 1. (24)

5. EXPERIMENTS

In this Section, we setup two experiments to evaluate the proposed
beamforming techniques. Firstly, we compare the array gains for dif-
ferent schemes that were proposed in Section 4, namely the MVDR
beamformer with best-iSNR array, with all arrays, and with best-
oSNR array. Further comparison is drawn by reformulating the gen-
eralized MVDR filters in Section 4 into their respective Multichan-
nel Wiener Filters (MWF). For example, (20) can be expressed for
MWF as

h(k, t) =
Φ−1

y(k,t)ρxXnr,1
(k, t)

ρH
xXnr,1

(k, t)Φ−1
y (k, t)ρxXnr,1

(k, t) + φ−1
Xnr,1

(k, t)
.

In addition to the fullband array gain, we compare these methods
in terms of distortion. We reformulate the multichannel distortion
index defined in [18] and rewrite it in terms of the pseudo-coherence
vector and complex filter weights as

SD =

∑
t

∑
k φXnr,1(k, t)|(u− h(k, t))HρxXnr,1

(k, t)|2∑
t

∑
k φXnr,1(k, t)

,

where u is a vector with only one nonzero element at index nr with
value one.
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Fig. 1. (a) An instance of experiment setup. (b) Input-SNR (dashed) and Output-SNR (solid). (c) Array gains for the proposed beamformers.
In (b) and (c) the MVDR beamformers with best-iSNR, all arrays, and best-oSNR are marked with stars, circles, and diamonds, respectively.

5.1. Simulations

The Dimensions of the simulated room are 5m×5m×3m. Received
signals are produced with the image method [23] in this enclosure.
The ad hoc microphone array contains 3 linear sub-arrays, each con-
sists of 3 microphones with inter-element space equal to 4.3 cm. All
microphones are assumed to be omnidirectional (monopole). The
desired speech signal for both experiments is played from a clean
recording by sampling frequency fs = 8 kHz. For STFT, the length
of each time frame is set to 32 ms with 75% overlap among neigh-
boring frames which corresponds to 8 ms hop. Averaging over 32
consecutive frames is used in estimation of pseudo-coherence vector
and correlation matrices.

For the first experiment, the room is assumed to be anechoic.
The source is located at (2.5, 2.5, 2.5). A constrained white Gaus-
sian noise is located at (2.5, 2.5, 0.5) with the same variance as the
desired speech signal. The three sub-arrays are placed randomly in
the room with a volumetric uniform distribution. This geometry im-
poses 50% probability limit on the cases that the received clean sig-
nal blasts over the noise. Performance measures are averaged over
999 Monte-Carlo simulations. The results for the MVDR and the
MWF filters are presented in Table 1. As can be seen, the proposed
MVDR filters result in smaller fullband array gain compared to the
MWF filters; however, the speech distortion factors for the MWF
filters are very high. Table 1 offers possible benefits of the pro-
posed MVDR filters, specifically the Best-iSNR and the Best-oSNR
schemes; however, it is still not clear when each of these methods
should be preferred over the others. In the next experiment, we form
an experiment to analyze a practical ad hoc situation with controlled
randomness.

For the second experiment, a teleconferencing scenario is as-
sumed in the room with the same size as before but suffering from re-
verberation with T60 equal to 250 ms. The desired speaker (square)
and three interfering speakers (diamonds) are positioned according
to Figure 1-a. All speech signals have variance one. Spatially Gaus-
sian white noise is added to the microphones with variance of −30
dB below the desired speech signal. Two of the ULAs are placed in
a fixed position while the third ULA was moved along a line from
(2.75, 2, 1.5) to (2.75, 3, 1.5) with 10 cm steps. The orientation
of ULAs on the plane is random. Array gain and speech distortion
for different locations of the third sub-array are averaged over 50
Monte-Carlo simulations. In Figure 1-b and Figure 1-c, the MVDR
beamformer with best-iSNR array, all arrays, and best-oSNR array
are compared. As the sub-array 3 moves farther from the desired
source and closer to the interferences, the input-SNR of all three
methods decreases linearly; however, the decrease stops at the mid-

Table 1. Fullband Array Gain and Speech Distortion Index for
Beamforming Schemes in The First Exprement. (Values are in [dB].)

Best-iSNR All Arrays Best-oSNR
MVDR MWF MVDR MWF MVDR MWF

A 12.5 18.5 10.5 14.5 14 20

SD −263.5 −6 −235 −7 −267.5 −6

point for the best-iSNR and the best-oSNR methods. The behavior of
input-/output-SNR for this setup is expected as the role of the mov-
ing sub-array changes from the closest microphone to the desired
signal to the closest one to the interference. Figure 1-c combines
information in Figure 1-b. From the three proposed schemes, the
best-oSNR MVDR filter is superior in a majority of places. How-
ever, the simplicity of the best-iSNR method compared to the two
others makes it the best candidate for close talking scenarios. At
last, beamforming with all arrays utilizes its multiplicity of elements
for very noisy situations. It should be noted that in our derivations
in previous sections and in these two simulations, we assumed the
same number of elements for all sub-arrays, but the general prin-
ciple of pseudo-coherence beamforming goes for other cases also.
The speech distortion for this experiment is in the same scale as the
MVDR filters in the first experiment.

It is important to note that in our simulations, we used (15)
since it does not require estimation of the noise correlation matrix,
Φvn(k, t); however, there have been a rise in the output SNR and
the array gain using noise statistics in (16), specifically for the beam-
forming with all arrays which showed an improvement of 12[dB] in
this experiment (not shown in the figure).

6. DISCUSSION

Conventional distributed array processing techniques may diverge
from optimality for emerging applications in ad hoc scenarios. It has
been shown that methods such as activity masked beamforming are
suboptimal but can result close to the centralized array processing
[15]. However, it is still unclear when each method is superior to
the others and should be used. In this paper, we proposed a new
beamforming scheme in which the speech coherency over sub-arrays
has been utilized to form different distortionless beamformers. We
have shown that despite the highly random nature of the problem, it
is possible to formulate useful measures and techniques to enhance
the selection phase. We have also shown that the proposed methods
do not require the huge transmission of inter-array data.
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