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ABSTRACT

Binaural localization of speech sources in 3-D, using head-
related transfer functions (HRTFs), always suffers elevation ambigu-
ity due to the limited high frequency spectral information available
at the receivers. This paper presents a method that overcomes this
limitation by exploiting the interaural phase and magnitude features
present in the HRTF. We (i) introduce a new feature vector that
combines these two sets of features in a non-linear fashion, and
(ii) propose a mechanism to extract this feature vector free from
distortion by the speech spectra. The performance of the proposed
method is evaluated and compared with a correlation-based HRTF
database matching approach and a two-step localization technique
for multiple source positions, HRTFs (individuals) and speech in-
puts. The results suggest that up to 20% improvement in localization
performance can be achieved for moderate signal-to-noise ratios.

Index Terms— Binaural localization, cepstral transformation,
generalized cross-correlation (GCC), head related transfer function
(HRTF), phase transform (PHAT).

1. INTRODUCTION

Through the course of time, the human auditory system has evolved
to efficiently localize sound sources in 3-D using just two signals
received at the ears. However, understanding the underlying mech-
anisms and replicating this ability has been an ongoing process,
mainly due to the complex fashion in which the location information
is imprinted on the received binaural signals. Numerous techniques
have been proposed to mimic the human localization process [1–3],
motivated by developments ranging from humanoid robotic systems
and target tracking systems to artificial hearing aids.

Of the localization cues contained in the HRTF, the interaural
time and level difference (ITD and ILD) are believed to be the most
important pieces of information used to determine the azimuth lo-
cation of a sound source [4, 5]. However, these cues are known to
dominate at lower frequencies and are insufficient for localizing the
elevation in 3-D, due to the existence of a ‘cone-of-confusion’ ex-
hibiting similar interaural cues [6]. On the other hand, the high fre-
quency spectral cues are known to facilitate elevation estimation [7],
and therefore plays a crucial role in 3-D binaural localization. Yet,
in a practical scenario (e.g., localizing speech sources), fully utiliz-
ing the richness of the spectral cues may not be possible due to the
limited bandwidth of speech sources.

The computation of the correlation between the two received
signals and a HRTF dataset is one of the most straightforward lo-
calization mechanisms [8]. This however does not consider the lo-
calization cue distribution within the HRTF, and is typically inaccu-
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Fig. 1. Operational block diagram of the localization system.

rate in noisy environments. Methods that do consider the existence
and dispersion of the localization cues generally adopt a joint [9]
or two-step process [2, 10] to first estimate the azimuth direction,
and the elevation afterwards. The problems with this method are, 1)
multiple potential source locations that exhibit similar ITD and ILD
characteristics, and 2) the lack of a complete set of spectral cues for
elevation estimation. Thus, identifying the most relevant localiza-
tion information and simultaneous estimation of both azimuth and
elevation becomes essential for robust binaural source localization.

In this paper, we present a method to localize a speech source in
3-D space, by creating a new feature vector, for simultaneous esti-
mation of both azimuth and elevation. First, the localization features
are characterized from the low frequency interaural phase difference
(IPD), and the mid-high frequency ILD/spectral cues. A new fea-
ture vector is constructed to include all these key localization fea-
tures. Next, we develop the signal processing required to extract
these features from the binaural received signals. For example, the
IPD is obtained from the cross spectral density of the two-ear sig-
nals and a truncated cepstral transform is used to extract the ILD and
spectral cues. Finally, the optimal frequency range of the phase and
magnitude features are investigated, and the overall localization per-
formance of the proposed feature vector based method is compared
with the simple correlation and the two-step localization methods.

2. SYSTEM MODEL

Consider a binaural localization system, where receivers at the two
ears sense the convolution of a speech source s(t) and the corre-
sponding head-related impulse response hi(t) (i ∈ {l, r} represent-
ing the left and right ears respectively). For a single (simultaneously
active) source localization scenario, the frequency domain represen-
tation of the received signal can be expressed as

Xi,k(f) = Hi(f,Θ) · Sk(f) +Ni,k(f), (1)

where Xi,k(f), Hi(f,Θ) and Sk(f) represent the received signal,
HRTF and source spectra at a frequency f . The source location in
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Fig. 2. Time difference of arrival of the HRTFs with respect to the
elevation β in the sagittal plane α = 30◦ of CIPIC ‘subject 003’.

3-D is denoted by Θ = (α, β), where α, β correspond to the az-
imuth and elevation, respectively, in a sagittal coordinate system.
k = 1 . . .K represents the time frame number of the speech signal
separated into K frames, where the frame length is less than the sta-
tionary time duration of the signal (typically 10–50 ms for voiced
speech [11]), and Ni,k(ω) represents the additive noise component.

Fig. 1 illustrates the functionality of the different modules in the
proposed localization system. In order to localize the speech source
in 3-D, the localization features that exist within the HRTF must first
be described and stored in a feature database. The main operations
of defining the interaural phase and magnitude features (i.e., level
difference and spectral information), and thereafter creating a com-
posite feature vector for localization are described below.

2.1. Interaural Phase Features

The ITD that arises as a natural consequence of the spatial separation
of the ears, is commonly used for estimating the azimuth of an in-
coming sound source. Localization techniques such as the General-
ized Cross-Correlation Phase Transform (GCC-PHAT) [12] method
exploit this fact to estimate the broadband time difference of arrival
(TDOA) between the signals and estimate the source azimuth. This
however loses much of the subtle differences in phase introduced
(which are both frequency and elevation dependent as shown in Fig.
2) by the head, torso and pinna through the effects of scattering and
reflections. Thus, incorporating the change in IPD with frequency,
for both azimuth and elevation localization, could lead to greater lo-
calization accuracy. We propose that this localization information be
extracted as an interaural phase feature, and express it as a normal-
ized cross power spectral density given by

Vp(f,Θ) =
Hr(f,Θ)Hl(f,Θ)∗

|Hr(f,Θ)||Hl(f,Θ)∗| , (2)

where ∗ denotes the conjugation operation. Thus, the feature vector
of interaural phase information for a source located in the direction
Θ can be expressed as

vp(Θ) =
[
Vp(fp

min,Θ), · · · , Vp(fp
max,Θ)

]
, (3)

in the range of frequencies f ∈ [fp
min, f

p
max].

2.2. Interaural Magnitude Features

The magnitude features of the HRTFs are primarily comprised of the
ILD and monaural spectral cues (shown in Fig. 3), and represent a
location dependent modulation of the received signal amplitude. To-
gether, the ILD as well as the left and right ear spectral cues (which
are commonly used in elevation localization), are therefore interaural
magnitude features that can be exploited for 3-D source localization.

In order to extract these features, we adopt a modified cepstral
processing method [13], previously proposed to extract the HRTF
magnitude response for binaural localization in the median plane.
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Fig. 3. Left ear HRTF magnitude response indicating monaural mag-
nitude features in the sagittal plane α = 30◦ of CIPIC ‘subject 003’.

Here, the HRTFs are first transformed into the the cepstral domain,
truncated to a finite order to remove any rapid fluctuations in the
frequency domain, and finally transformed back into the frequency
domain as a smoothed HRTF magnitude response. We therefore ex-
press the magnitude feature vector of the signal received at a partic-
ular ear as [13]

vm
i (Θ) = C−1

{
T
[
C {hi(Θ)}

]}∣∣∣ f ∈ [fm
min, f

m
max], (4)

where C and C−1 represent the cepstral and inverse cepstral trans-
forms, respectively. T describes the cepstral truncation operation
in [13] and hi(Θ) =

[
Hi(0,Θ), · · · , Hi(Fs/2,Θ)

]
for a

sampling rate of Fs. fm
min and fm

max demarcates the range of fre-
quencies whose magnitude features are of interest to us.

2.3. The Composite Feature Vector for 3-D Localization

In order to simultaneously determine α and β in Θ for 3-D local-
ization, we define a new composite feature vector as a non-linear
combination of the inteaural phase and interaural magnitude features
described in the previous subsections. Mathematically, this feature
vector can be expressed as

v(Θ) , vp(Θ)�
{
vm
r (Θ)� vm

l (Θ)
}
, (5)

where � and � represent the element-wise multiplication and divi-
sion of vectors, respectively. The advantage of this non-linear com-
bination is to enlarge the differences of the feature vectors between
closely spaced source positions, thus making it especially suitable
for 3D localization. It should also be noted that vp(Θ) and vm

i (Θ)
must be of similar length; thus, one feature vector may require finer
sampling in the frequency domain (in this work, a simple interpola-
tion of vp(Θ) is adopted for this purpose).

3. FEATURE EXTRACTION FROM RECEIVED SIGNALS

The received signals at the two ears in (1), although containing direc-
tional information, are both time variant due to the effects of speech
and are corrupted by noise. Hence, these signals must be processed
further to extract the features discussed in the previous section.

3.1. Received Signal Processing

3.1.1. Feature Extraction: Interaural Phase

In order to extract the interaural phase feature vector, we define the
estimated interaural phase as the mean normalized cross power spec-
tral densities of the two received signals in (1), given by

V̂p(f) , E

{
Xr,k(f)Xl,k(f)∗

|Xr,k(f)||Xl,k(f)∗|

}
, (6)

where E{·} represents the expectation operator over time. Approx-
imating (6) for K voiced speech frames obtained through the voice
activity detector in Fig. 1 (i.e., |Sk(f)| 6= 0),
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V̂p(f) =
1

K

K∑
k=1

Xr,k(f)Xl,k(f)∗

|Xr,k(f)||Xl,k(f)∗| ≈
Hr(f,Θ)Hl(f,Θ)∗

|Hr(f,Θ)||Hl(f,Θ)∗| ,

(7)
for large received signal-to-noise ratios (SNRs), i.e., |Ni,k(f)| �
|Hi(f,Θ)Sk(f)|, at either ear. Hence, the estimated interaural
phase feature vector can be expressed as

v̂p =
[
V̂p(fp

min), · · · , V̂p(fp
max)

]
. (8)

3.1.2. Feature Extraction: Interaural Magnitude

We extract the interaural magnitude features from the received signal
using a modified version of the cepstral preprocessing method pro-
posed in [13]. Exploiting the properties of the cepstral domain signal
processing, the time averaged and cepstral truncated signal becomes

1

K

K∑
k=1

T
[
C {xi,k}

]
= T

[
C {hi(Θ)}

]
+

1

K

K∑
k=1

T
[
C {sk}

]
+ni,

(9)
where ni represents the time averaged noise cepstrum, xi,k =
[Xi,k(0), · · · , Xi,k(Fs/2)] and sk = [Sk(0), · · · , Sk(Fs/2)]. As-
suming sufficiently long observations and same statistical properties
for nl and nr (i.e., nr − nl → 0), the inverse cepstral transform of
the difference in (9) between the two ears represents the magnitude
feature vector. That is, we extract the feature

v̂m , C−1

{
1

K

K∑
k=1

T
[
C {xr,k}

]
− 1

K

K∑
k=1

T
[
C {xl,k}

]}
≈ C−1

{
T
[
C {hr(Θ)} − C {hl(Θ)}

]}
, (10)

which is roughly equivalent to vm
r (Θ)� vm

l (Θ) in (5).

Combining (8) and (10), the estimated composite feature vector can
therefore be expressed as

v̂ , v̂p � v̂m. (11)

3.2. Source Location Estimation

Ideally, the estimated composite feature vector in (11) is coincident
only with the composite feature vector of the true source location
given by (5). Thus, the magnitude of the Euclidean distance between
these quantities can be used to estimate the source location. We
express this as a localization error metric ∀Θ, given by

E
(
Θ ≡ (α, β)

)
= 20 log10

∥∥∥∥{ v̂

‖v̂‖ −
v(Θ)

‖v(Θ)‖

}∥∥∥∥, (12)

the minimum of which yields the estimated source location in 3-D.

4. EVALUATION

4.1. Simulation Configuration

The proposed binaural localization technique in 3-D space is eval-
uated through simulations using the CIPIC HRTF database [14].
Here, the HRTFs of 45 subjects, each with 950 different locations
(the azimuth angle varies from −45◦ to 45◦ with a 5◦ interval and
the elevation varies from−45◦ to 230.625◦ degree with a 5.625◦ in-
terval), are utilized. The clean speech signals are obtained from the
recordings used in the “PASCAL ’CHiME’ Speech Separation and
Recognition Challenges” [15]. The database contains 34 speakers,
each with 500 utterance segments sampled at 16 kHz. The received
binaural signals are simulated by convoluting the HRTF with speech
samples, and considering the variability of the speech spectrum, a
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Fig. 4. 3-D localization error probability for different frequency
ranges of phase and magnitude features with respect to SNR. (a)
Localization error probability with respect to the phase feature fre-
quency range 0–fp

max kHz and a magnitude feature range of 3–5
kHz. (b) Localization error probability with respect to the magnitude
feature frequency range 3–fm

max kHz and the phase feature range of
[0, 4] kHz. (c) Localization error probability with respect to upper
frequency limits of phase and magnitude features at 30 dB SNR.

short-time approach, i.e., a short-time Fourier transform, is applied.
A voice activity detector identifies the voiced speech frames, while
both the Fourier and cepstral transforms employ a 20 ms Hamming
window with 10 ms overlap. For the 16 kHz sample rate, this im-
plies that a window length of 320 is used throughout the simulation.
The optimum feature frequency ranges are selected by comparing
the localization performances for different range combinations.

The performance of the proposed localization technique is com-
pared with the two-step [2,10] and simple correlation approaches [8].
The two-step method, uses ITD/ILD information to narrow down the
potential source locations to a specific cone-of-confusion, prior to
estimating the elevation using the binaural magnitude spectra. The
simple correlation approach on the other hand, simply computes the
correlation between the received binaural signals and the complete
HRTF dataset. In both cases, the best match to the HRTF dataset
identifies the estimated source location. We compare the localization
performance in terms of the ‘localization error probability’, i.e., the
likelihood of a localization error across all 950 source locations over
multiple trials (lower values imply better performance). The results
indicate the mean localization performance for all 45 subjects in the
HRTF dataset, while the error bars indicate the standard deviation.
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4.2. Impact of Bandwidth on the Feature Extraction Process

A significant issue when constructing the composite feature vector
is the selection of the appropriate frequency bands for feature ex-
traction. This requires that only the most relevant localization in-
formation is included, so as to reduce the complexity and minimize
the noise influence. Traditionally, the phase features are extracted
from a relatively low frequency range (i.e., 0–1.5kHz) to calculate
the ITD/IPD [16]. However, in the proposed feature vector, the phase
features are not only used to estimate the azimuth but also to local-
ize the elevation; and hence, requires much higher frequencies to
be included [7]. In the simulations, we modify the upper frequency
limit of the phase feature, fp

max, in order to determine the optimal
frequency range. Here, the lower frequency limit fp

min is fixed at 0,
since the low frequency phase information is essential for azimuth
estimation. As for the magnitude features, it is necessary to find
the frequency band that includes the key features, subject to mini-
mal distortion by the speech spectrum, within the speech bandwidth.
Since the formants and a majority of the speech energy exists below
3 kHz [17], the lower frequency limit, fm

min, is therefore fixed at 3
kHz and the upper limit fm

max is varied during the simulation.
The simulation results of the localization error probability (for

all 45 subjects in the HRTF database) for feature range selection are
illustrated in Fig. 4 at different SNRs. The results indicate that the
optimum frequency bands for phase and magnitude feature extrac-
tion are [0, 4] kHz and [3, 5] kHz; a region where the localization
error probability is a minimum for all SNRs. Figs. 4(a) and (b) illus-
trate the impact of the upper frequency limits for the phase and mag-
nitude features, respectively. The joint impact of both parameters is
illustrated in Fig. 4(c). They show that the interaural phase features,
up to a relatively high frequency range, do actively contribute to el-
evation estimation, as expected intuitively from Fig. 2. As for the
magnitude feature frequency range, when the upper frequency limit
is greater than 6 kHz, the received signals are more strongly affected
by noise (due to the rapid decay of speech energy with frequency),
and results in a degradation of the localization performance.

4.3. Overall 3-D Localization Performance

Fig. 5(a) illustrates an example spectra of the localization er-
ror metric (described in Section 3.2), for a source located at
Θ ≡ (20◦, 16.875◦) at 30 dB SNR. As shown, the estimated source
location corresponds to the location that minimizes the error metric
E(Θ). Furthermore, the distinctive spike suggests that elevation
ambiguity is also minimal. In order to evaluate the 3-D localization
performance, we use these estimates for all possible source locations
and subjects, and analyse the overall localization error probability.

Fig. 5(b) illustrates the overall localization error probability and
compares the performance of the proposed method and the two com-
parison methods. The presented data illustrates the mean perfor-
mance for all 45 CIPIC subjects, where the error bar indicates the
standard deviation. In general, as expected, the localization error
probability decreases with increasing SNRs. The proposed method
has the best localization performance with the lowest probability of
localization errors under all noise conditions. This suggests that the
proposed method is more robust to the effects of noise. Furthermore,
the error bars of the proposed method are generally smaller than the
other two methods, especially at higher SNR, which implies that the
proposed method has more consistent performance for different lis-
teners’ HRTFs. In addition, comparing the proposed method and
the two-step method, the crucial difference is in the use of the phase
features for elevation estimation. Here, the two-step method utilizes
the interural phase feature only for azimuth localization, while the
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Fig. 5. (a) Localization error metric of the proposed method for a
source located at α=20◦ and β=16.875◦. (b) Comparison of the
overall 3-D localization error probability of the proposed method,
two-step method and correlation method for SNRs from 10–40 dB.

proposed method does so for joint azimuth and elevation estima-
tion. The superior localization performance of the proposed method
therefore proves that the phase features do indeed contain elevation
localization information, and should not be neglected in 3-D binaural
localization of speech sources.

5. CONCLUSION

In this paper, we propose a novel composite feature vector based
method for binaural localization of speech sources in 3-D space. We
describe how interaural phase and magnitude feature vectors can be
derived from the HRTFs, and describe the process of extracting and
combining these features from the received signals. A method to es-
timate the azimuth and elevation simultaneously is introduced after-
wards. We evaluate its performance through simulations, and show
that optimum bandwidths for both phase and magnitude features ex-
ist. The overall performance of the proposed method is compared
with two other methods, and is shown to produce a more consistent,
noise-robust source location estimate. Furthermore, the results show
that interaural phase information is critically important for accurate
elevation estimation using sources such as speech. Future work will
extend this feature vector concept to multi-source localization.

6. RELATION TO PRIOR WORK

This work presents a method for binaural localization of speech
sources in 3-D using a feature vector of the localization information
in the HRTFs. In the literature, elevation estimation has predomi-
nantly relied on spectral cues [1–3, 7, 8, 13], which may be eclipsed
by noise when receiving sources such as speech with less energy
at higher frequencies. The present study attempts to extract a set
of phase and magnitude features [13] in the HRTFs, free from the
effects of noise, within the speech bandwidth. It combines these
features into a single composite feature for simultaneous azimuth
and elevation estimation, which has not been considered in previous
studies.
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