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ABSTRACT

Joint estimation of the directions-of-arrival (DOAs) and fre-
quencies of multiple signals is addressed in this paper. By
constructing a set of joint diagonalization matrices, two cost
functions that do not requirea priori information of the
source number are devised for DOA and frequency estima-
tion in a separate manner. This enables us to estimate DOAs
and frequencies via twoone-dimensional search steps in their
corresponding spatial and frequency domains. Thus, the
tremendoustwo-dimensional search required in the standard
approaches can be avoided. Simulation results demonstrate
the effectiveness of the proposed approach.

Index Terms— Direction-of-arrival (DOA) estimation,
frequency estimation, joint diagonalization.

1. INTRODUCTION

Joint direction-of-arrival (DOA) and frequency estimation of
multiple signals is an important problem in spatial-temporal
radio channel measurement [1]-[6]. A precise estimation of
DOAs and frequencies for the signals of interest can help
to provide better channel information in support of improved
link quality.

To tackle this issue, various estimators have been devel-
oped in the literature. ESPRIT-like algorithms [4]-[6] have
been proposed to balance the estimation accuracy and com-
putational complexity. In [5], a joint angle and frequency
estimation (JAFE) algorithm has been suggested, in which
the observation data are preprocessed by the temporal-spatial
smoothing technique, and then the conventional ESPRIT
scheme is employed to estimate the DOAs and frequencies.
With the numbers of antennas and samples increase, there
exists overlapping elements between the two sides of the
rotational invariance equations. This is the reason why the
conventional ESPRIT which is based on least squares tech-
nique suffers performance degradation [6]-[7]. To overcome
this problem, a structured least squares based ESPRIT (SLS-
ESPRIT) algorithm [6] has been devised. The SLS-ESPRIT
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approach has a better performance accuracy compared to the
conventional ESPRIT algorithms. However, it relies on thea
priori knowledge of number of signals. As a matter of fact,
the number of signals is usually unknown to the receiver in
practice, and its estimate [8]-[10] is used instead. Moreover,
the probability of successfully detecting the source number
is still low when the signal-to-noise ratio (SNR) and sample
size are smaller than a certain threshold [11].

In this paper, we propose a new approach for joint DOA
and frequency estimation which does not need the source
number information. Our proposal employs a set of data ma-
trices which have the same joint diagonalization structureto
construct two cost functions, that is, one of them is for DOA
estimation and the other one is for frequency estimation. As
a result, the DOA and frequency parameters are determined
by using twoone-dimensional peak search procedures sepa-
rately.

2. PROBLEM FORMULATION

Consider a uniform linear array (ULA) ofM omnidirectional
sensors. There areP (P < M) uncorrelated narrowband
sinusoids impinging on the array from distinct directions
{θ1 · · · θP } in the far field. Then theM × 1 observation
vector at the receiver is

x(t) =
P
∑

p=1

αpape
jωpt + n(t)

= As(t) + n(t) (1)

whereαp andωp are the complex amplitude and frequency of
thepth signals,s(t) = [α1e

jω1t · · · αP e
jωP t]T is the source

signal vector with(·)T being the transpose,n(t) is the addi-
tive white Gaussian noise vector with mean zero and covari-
anceσ2

nIM . Here,IM is theM × M identity matrix. The
A = [a1 · · · aP ] is the array manifold with

ap =
[

1 ej2π sin(θp)d/λ · · · ej2π(M−1) sin(θp)d/λ
]T

(2)

being thepth steering vector. Here,λ is the carrier wavelength
andd = λ/2 is the interelement spacing.
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3. PROPOSED ALGORITHM

3.1. Data Processing

It is easy to verify that

x(t+ k) = As(t+ k) + n(t+ k)

= AΦks(t) + n(t+ k) (3)

where
Φ = diag{ejω1 · · · ejωP }. (4)

To proceed, we form aMm× 1 data vector

yi =
[

xT (i) · · · xT (i +m− 1)
]T

= Bs(i) + ni, i = 0 · · · N −m (5)

whereB = C ⊙ A with ⊙ being the Khatri-Rao product,
ni = [nT (i) · · · nT (i+m−1)]T ,N is the number of samples
and

C =











1 · · · 1
ejω1 · · · ejωP

...
. . .

...
ej(m−1)ω1 · · · ej(m−1)ωP











. (6)

We expressyi as aM × m data matrix, denoted byYi,
which has the form of

Yi =











y1 yM+1 · · · yM(m−1)+1

y2 yM+2 · · · yM(m−1)+2

...
...

. . .
...

yM y2M · · · yMm











(7)

The(i, j) entry ofYi is represented as[Y]i,j = yi+(j−1)M .
It is obvious that the vectorization ofYi is equivalent toyi

such that we have1

Yi = AΛiC
T +Ni (8)

whereΛi = diag{α1e
jω1i · · · αP e

jωP i} andNi is obtained
similarly toYi, i.e., by reshapingni into aM ×m matrix.

3.2. Joint DOA and Frequency Estimation without Source
Number Information

3.2.1. DOA Estimation

In the absence of noise,Yi can be written as

Yi = AΛiC
T =

P
∑

p=1

si,papc
T
p (9)

wheresi,p is thepth element ofs(i) andcp is thepth column
of C. It follows from (9) that for thejth source, there always

1If B is a diagonal matrix, we have vec{ABC} = (CT ⊙A)b where
B is diagonal andb contains the diagonal elements ofB.

exists a vectorbj ∈ Cm that is orthogonal to the range space
spanned by the remaining(P − 1) steering vectors exceptcj ,
i.e.,

cTp bj =

{

cTj bj , p = j

0, p 6= j.
(10)

Substituting (10) into (9) yields

Yibj =

P
∑

p=1

si,papc
T
p bj = giaj (11)

wheregi = si,jc
T
j bj .

From (11), we confirm that ifθj is one of the true DOAs,
there always exists a scalargi that makesYibj andaj par-
allel. Since (11) holds true for0 ≤ i ≤ N − m, we try to
minimize the total distance between the(N −m + 1) equa-
tions in (11). To this end, similar to [12]-[15], we construct
the following optimization problem

min
θ

J(θ,g,b) =

N−m
∑

i=0

||Yib− gia||
2

s. t. ||g|| = 1 (12)

where|| · || is the Euclidean norm,a is the steering vector
with parameterθ to be optimized,g = [g0 · · · gN−m]T ∈
CN−m+1 and the constraint||g|| = 1 is used to avoid the
trivial solution of (12), i.e.,g = 0N−m+1 andb = 0m [12]-
[13] with 0m being the zero vector.

Sinceb andg are unknown parameters, it is difficult to
optimize (12) by searching for the DOAs directly. To circum-
vent this issue, we attempt to simplify (12), so that it is not
affected byb andg. Let

Fθ =

N−m
∑

i=0

YH
i Yi ∈ C

m×m (13)

Gθ =
[

YH
0 a · · · YH

N−ma
]

∈ C
m×(N−m+1). (14)

The cost function in (12) can be rewritten as

J(θ,g,b) = bHFθb− bHGθg − gHGH
θ b+M. (15)

By using the method of Lagrange multiplier, we have [15]

J(θ,g,b) = bHFθb− bHGθg − gHGH
θ b+M

+ λ(||g|| − 1). (16)

For fixedθ andg, we differentiate (16) with respect tob and
then set the so-obtained expression to zero, yielding

bopt = F
†
θGθg (17)

where(·)† is the pseudo-inverse. Substituting (17) back into
(12), the optimization problem is reduced to

min
θ

J(θ,g) = M − gHGH
θ F

†
θGθg (18)
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Minimizing (18) equals to maximizinggHGH
θ F

†
θGθg. It

is easy to verify that the maximum ofgHGH
θ F

†
θGθg is

achieved if and only ifg is the eigenvector corresponding to
the maximum eigenvalue ofGH

θ F
†
θGθ [15]. Therefore, (18)

can be further simplified as

min
θ

J(θ) = M −maxeig
{

GH
θ F

†
θGθ

}

(19)

wheremaxeig(·) denotes the maximum eigenvalue of a ma-
trix. Thus, we can obtain the pseudo output power spectrum

P (θ) =
1

M −maxeig
{

GH
θ F

†
θGθ

} . (20)

Given the search range, the DOAs are selected as the angles
corresponding to the highest local maxima ofP (θ).

3.2.2. Frequency Estimation

Since the frequency information is contained inC, it follows
from (9) thatYT

i spans the same range space ofC, i.e.,

span{YT
i } = span{C}. (21)

Hence, taking transpose ofYi yields

YT
i = CΛiA

T =

P
∑

p=1

si,pcpa
T
p (22)

There is a vectorej ∈ CM such that

aTp ej =

{

aTj ej , p = j

0, p 6= j.
(23)

Substituting (23) into (22) yields

YT
i ej =

P
∑

p=1

si,pcpa
T
p ej = hicj (24)

wherehi = si,ja
T
j ej .

Utilizing the similar manipulations as those in DOA esti-
mation, we construct the following optimization problem

min
ω

J(ω,h, e) =

N−m
∑

i=0

||YT
i e− hic||

2

s. t. ||h|| = 1. (25)

Define

Fω =

N−m
∑

i=0

Y∗
iY

T
i ∈ C

M×M (26)

Gω =
[

Y∗
0c · · · Y∗

N−mc
]

∈ C
M×(N−m+1) (27)

where(·)∗ is the conjugate. The objective function in (25) is
further simplified as

min
ω

J(ω) = m−maxeig
{

GH
ω F†

ωGω

}

. (28)

Our goal is to estimate the frequencies by searching over a
given frequency range. Hence, the pseudo output power spec-
trum for frequency estimation is given as

P (ω) =
1

m−maxeig
{

GH
ω F

†
ωGω

} . (29)

The frequencies corresponding to the highest local maxima of
P (ω) are selected as the estimated frequencies.

3.3. Pairing Procedure
When there exists more than one targets, a pairing pro-
cess is needed to group̂θi and ω̂i. To begin, we setY =
[y0 · · · yN−m]. According to (5), in the absence of noise,Y

can be expressed asY = B · [s(0) · · · s(N −m)]. Then, let
Us = [u1 · · · uP ] be the signal subspace whereup is thepth
eigenvector that is corresponding to thepth largest eigenvalue
associated withY. Define

γ(ωm, θn) = cm ⊗ an, m, n = 1 · · · P (30)

where⊗ is the Kronecker product. For themth frequency,
we vary θ̂ and calculatetm = [t1 · · · tP ] where ti =
∑P

p=1 |u
H
p γ(ωm, θi)|

2. With the results in [16], the DOA
corresponding to themth frequency is determined by choos-
ing the DOA associated with the maximumti in tm.

The proposed method for joint DOA and frequency esti-
mation is summarized in Table I.

4. SIMULATION RESULTS

The performance of the proposed algorithm is examined in
this section. We consider a ULA ofM = 8 sensors suc-
cessively separated by a half-wavelength. The noise is white
Gaussian process with zero mean and unit variance.

In the first example, we assume that seven signals with
equal powers arrive at the ULA from anglesθ1 = −50◦, θ2 =
−33.3◦, θ3 = −16.7◦, θ4 = 0◦, θ5 = 16.7◦, θ6 = 33.3◦

andθ7 = 50◦. Meanwhile, their frequencies areω1 = 0.2π,
ω2 = 0.3π, ω3 = 0.4π, ω4 = 0.5π, ω5 = 0.6π, ω6 = 0.7π
andω7 = 0.8π. We setN = 50 andm = 20. Theα is ran-
domly generated from Gaussian distribution. The SNR is set
to be 10 dB. Fig. 1(a) displays ten spatial spectra for DOA and
frequency estimation. It is observed that the proposed method
successfully estimates the seven DOAs and frequencies. We
now consider a case of two closely spaced signals with fre-
quencyω1 = 0.4π andω2 = 0.6π located atθ1 = −2◦ and
θ2 = 2◦. The other parameters are the same as those in Fig.
1(a). It is shown in Fig. 1(b) that there are two distinct peaks
in both DOA and frequency estimation pseudo spectra.

In the second example, we consider a case whenM = 8,
N = 40,m = 16 and SNR= 10 dB. There areP = 7 signals
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Table 1. Pseudo-code of proposed algorithm

(a) DOA Estimation

Step 1: Use (7) to construct{Yi}
N−m
i=0 .

Step 2: Employ (13) and (14) to constructFθ and
Gθ, respectively.
Step 3: Utilize (20) to form the pseudo spectrum
P (θ).

Step 4: Estimate the DOAs by searching for the
peaks ofP (θ).

(b) Frequency Estimation

Step 1: Take the transpose of{Yi}
N−m
i=0 .

Step 2: ConstructFω andGω based on (26) and
(27).

Step 3: Utilize (29) to obtain the pseudo spec-
trumP (ω).

Step 4: Estimate the frequencies by searching for
the peaks ofP (ω).

(c) Pair the DOA and frequency estimates using the
procedure in Section 3.3.
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Fig. 1. Pseudo output power spectrum. Vertical lines show
the true DOAs and frequencies. (M = 8, m = 20, N = 50,
SNR= 10 dB)

with frequencies being0.56π,−0.3π, 0,−0.8π, 0.7π,−0.4π
and0.3π and DOAs being−23◦, −45◦, 1◦, 19◦, 30◦, −9◦

and50◦, respectively. It is seen from Fig. 2 that the proposed
algorithm can correctly pair the frequencies and DOAs.

In the third example, the mean square error (MSE) per-
formance of the proposed scheme is compared with that of
the ESPRIT [4], JAFE [5] and SLS-ESPRIT [6] methods as a
function of SNR. Consider a scenario where there are two sig-
nals with frequenciesω1 = 0.2π andω2 = 0.56π located at
θ1 = 1◦ andθ2 = 10◦, respectively. We setα1 = 0.4 + 0.5j,
α2 = 0.9 − 0.7j, N = 40 andm = 16. The SNR is varied
from 0 dB to 30 dB. Furthermore, we assume that the number
of signals is known to the ESPRIT, JAFE and SLS-ESPRIT
algorithms. It is shown in Fig. 3 that for DOA estimation, the
proposed and the SLS-ESPRIT schemes achieve almost the
same performance and both of them outperform the ESPRIT
and JAFE algorithms. For frequency estimation, however, the

−80 −60 −40 −20 0 20 40 60 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

θ(°)

ω
/π

 

 
Proposed
True

Fig. 2. DOA and frequency estimation for seven targets.
(M = 8, m = 16, N = 40, SNR= 10 dB,P = 7)

performance of the proposed method is a little bit inferior to
its counterparts. Compared to the ESPRIT, JAFE and SLS-
ESPRIT algorithms which rely on thea priori knowledge of
source number, the main advantage of the proposed approach
is that it does not need the source number information. There-
fore, it is much more attractive for practical applications.
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Fig. 3. MSE versus SNR. (M = 8, m = 16,N = 40,P = 2)

5. CONCLUSION

In this paper, we have devised a joint DOA and frequency esti-
mation algorithm based on the joint diagonalization structure
of a set of transformed data matrices. The most favorable ad-
vantage of the proposed scheme is that it does not require the
source number information. Such an advantage is highly de-
sirable for practical applications since detection of the source
number is usually a very difficult task. Moreover, extensive
simulation results demonstrate that the proposed approachis
able to provide comparable estimation performance with the
state-of-the-art methods.
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