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ABSTRACT approach has a better performance accuracy compared to the
Joint estimation of the directions-of-arrival (DOAs) and-f conventional ESPRIT algorithms. However, it relies onahe
quencies of multiple signals is addressed in this paper. B9riori knowledge of number of signals. As a matter of fact,
constructing a set of joint diagonalization matrices, twstc the number of signals is usually unknown to the receiver in
functions that do not require priori information of the Practice, and its estimate [8]-[10] is used instead. Moeeov
source number are devised for DOA and frequency estimghe probability of successfully detecting the source numbe
tion in a separate manner. This enables us to estimate DOAS Still low when the signal-to-noise ratio (SNR) and sample
and frequencies via twane-dimensional search steps in their Size are smaller than a certain threshold [11].
corresponding spatial and frequency domains. Thus, the !N this paper, we propose a new approach for joint DOA
tremendouswo-dimensional search required in the standard and frequency estimation which does not need the source

approaches can be avoided. Simulation results demonstrdimber information. Our proposal employs a set of data ma-
the effectiveness of the proposed approach. trices which have the same joint diagonalization structare

construct two cost functions, that is, one of them is for DOA
estimation and the other one is for frequency estimation. As
a result, the DOA and frequency parameters are determined
1. INTRODUCTION by using twoone-dimensional peak search procedures sepa-
rately.

Index Terms— Direction-of-arrival (DOA) estimation,
frequency estimation, joint diagonalization.

Joint direction-of-arrival (DOA) and frequency estimatiof

multiple signals is an important problem in spatial-tengbor

radio channel measurement [1]-[6]. A precise estimation of

DOAs and frequencies for the signals of interest can heliConsider a uniform linear array (ULA) d@ff omnidirectional

to provide better channel information in support of imprdve sensors. There arB (P < M) uncorrelated narrowband

link quality. sinusoids impinging on the array from distinct directions
To tackle this issue, various estimators have been deve{d; --- 0p} in the far field. Then thel/ x 1 observation

oped in the literature. ESPRIT-like algorithms [4]-[6] leav vector at the receiver is

been proposed to balance the estimation accuracy and com- P

putational complexity. In [5], a joint angle and frequency — Jwpt

estimation (JAFE) algorithm has been suggested, in which x() I;%ape al)

the observation data are preprocessed by the temporaddspat — As(t) + () )

smoothing technique, and then the conventional ESPRIT

scheme is employed to estimate the DOAs and frequenciesherea,, andw, are the complex amplitude and frequency of

With the numbers of antennas and samples increase, thettee pth signalss(t) = [aje?“1t ... ape/*?t]T is the source

exists overlapping elements between the two sides of thsignal vector with(-)” being the transpose,(t) is the addi-

rotational invariance equations. This is the reason why théve white Gaussian noise vector with mean zero and covari-

conventional ESPRIT which is based on least squares technces2I,,. Here,I,, is the M x M identity matrix. The

nique suffers performance degradation [6]-[7]. To overeom A = [a; --- ap] is the array manifold with

this problem, a structured least squares based ESPRIT (SLS- T

ESPRIT) algorithm [6] has been devised. The SLS-ESPRIT a, = |1 ¢/27sm(0)d/A .. o2m(M—1)sin(0p)d/\ )

2. PROBLEM FORMULATION

The work described in this paper was supported by the Ndtatural

Science Foundation of China under Grants 61222106 and 68771 being thepth steering vector. Here, s the carrier wavelength

andd = \/2 is the interelement spacing.
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3. PROPOSED ALGORITHM
3.1. Data Processing

Itis easy to verify that

x(t+k) = As(t + k) + n(t + k)

= A®"s(t) +n(t + k) €)
where , .
P = diag{e’*t --- /9P 1. 4)
To proceed, we form &/m x 1 data vector
yi= [XT(i) o xT (i m— 1)]T
=Bs(i)+n;, i=0--- N—m (5)

whereB = C ® A with ® being the Khatri-Rao product,
n; = [n?(i) --- nT(i+m—1)]T, N isthe number of samples
and

1 . 1
eJwi eJwp

C= (6)

pi(m—1)w; i(m—1)wp

We expresy; as aM x m data matrix, denoted by,
which has the form of

Y1 Ym+1 YM(m—1)+1
Y2 YM+2 YM(m—1)+2

vi= | " oy @
YM YoM YMm

The (7, j) entry of Y; is represented d¥]; j = ¥+ (j—1)m-
It is obvious that the vectorization & ; is equivalent toy;
such that we have

whereA; = diag{a e/ ... ape/Pi} andN; is obtained
similarly to Y3, i.e., by reshaping; into aM x m matrix.
3.2. Joint DOA and Frequency Estimation without Source
Number Information

3.2.1. DOA Estimation

In the absence of nois¥; can be written as
P
Y, = AACT =) sipac) 9)
p=1

wheres, , is thepth element o&(i) andc, is thepth column
of C. It follows from (9) that for thejth source, there always

Lif B is a diagonal matrix, we have veABC} = (CT ® A)b where
B is diagonal and contains the diagonal elementsBf

exists a vectob; € C™ that is orthogonal to the range space
spanned by the remainir{@® — 1) steering vectors except,
i.e.,

I'b Wp=7
R A (10)
0, p#J
Substituting (10) into (9) yields
P
Ylb] = Z swapc;{bj = g:a; (11)
p=1

Wheregq; = SZ‘J‘CJTbj.

From (11), we confirm that i#; is one of the true DOAs,
there always exists a scalgs that makesY ;b; anda; par-
allel. Since (11) holds true fdr < ¢ < N — m, we try to
minimize the total distance between th¥€ — m + 1) equa-
tions in (11). To this end, similar to [12]-[15], we consttuc
the following optimization problem

N—m

. _ . J— . 2
min J(,g,b) = Z |[Y;b — g;al

=0

s.t.]lgll=1 (12)
where|| - || is the Euclidean norma is the steering vector
with paramete¥ to be optimizedg = [go -+ gn_m]T €
CN-m+1 and the constraintg|| = 1 is used to avoid the

trivial solution of (12), i.e.g = Oy _,,+1 @andb = 0,, [12]-
[13] with 0,,, being the zero vector.

Sinceb andg are unknown parameters, it is difficult to
optimize (12) by searching for the DOAs directly. To circum-
vent this issue, we attempt to simplify (12), so that it is not
affected byb andg. Let

N—m
Fo= > Y/Y,eCcm™ (13)
=0
Go=[Yla - YN _, a] ecxV-mth o (14)
The cost function in (12) can be rewritten as
J(0,2,b) = b"Fyb —b"Gog — g”"G'b+ M. (15)

By using the method of Lagrange multiplier, we have [15]
J(0,g,b) =bAFsb — b Gyg — g"Glb+ M
+ Allgll = 1)

For fixedd andg, we differentiate (16) with respect tvand
then set the so-obtained expression to zero, yielding

(17)

(16)

bopt = FgGeg

where(-)! is the pseudo-inverse. Substituting (17) back into
(12), the optimization problem is reduced to

min J(6.8) = M - g G{F|Gog (18)
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Minimizing (18) equals to maximizing” GZF}Gyg. It
is easy to verify that the maximum of” GJ'F}Gyg is

achieved if and only i is the eigenvector corresponding to
the maximum eigenvalue dﬁngGg [15]. Therefore, (18)

can be further simplified as

mein J(0) = M — maxeig {GéngGe} (19)

wheremax eig(-) denotes the maximum eigenvalue of a ma-
trix. Thus, we can obtain the pseudo output power spectrum

1
M — maxeig{ G F} Gy |

P(0) (20)

where(-)* is the conjugate. The objective function in (25) is
further simplified as

min J(w) =m — maxeig{GfFLGw} .

w

(28)

Our goal is to estimate the frequencies by searching over a
given frequency range. Hence, the pseudo output power spec-
trum for frequency estimation is given as

1
m — maxeig{GfFLGw}.

Pw) = (29)

The frequencies corresponding to the highest local maxfma o
P(w) are selected as the estimated frequencies.

3.3. Pairing Procedure

Given the search range, the DOAs are selected as the anglg#en there exists more than one targets, a pairing pro-

corresponding to the highest local maximait(®).

3.2.2. Frequency Estimation

Since the frequency information is containeddnit follows
from (9) thatY! spans the same range spac€pfi.e.,

spa{Y?} = spar{C}. (21)
Hence, taking transpose &f; yields
P
Y/ =CAAT =) sipcpa) (22)
p=1
There is a vectoe; € CM such that
aTez7 =
ale; =3 P (23)
0, p#j
Substituting (23) into (22) yields
P
Yle, = Z siypcpagej = hic; (24)

p=1

— s .ale,
whereh; = s; ja; e;.

Utilizing the similar manipulations as those in DOA esti-

mation, we construct the following optimization problem

N—m
min J(w,h,e) = Z 1Y e — hicl|?
i=0

s.t. ||h|| = 1. (25)
Define
N—m
F,= Y Y;Y]ecMM (26)
=0
Go = [Yic -+ Yi_pc| € CMXWN=mth)(27)

cess is needed to grodp andw;. To begin, we sely =
[yo ‘- ¥n—m]. According to (5), in the absence of noi3é,
can be expressed 3 =B - [s(0) --- s(N —m)]. Then, let
U; = [u; --- up] be the signal subspace whergis thepth
eigenvector that is corresponding to itk largest eigenvalue
associated witfy'. Define

7(Wm70n) =cp®a,, mn=1---P (30)

where® is the Kronecker product. For theth frequency,
we varyé and calculatet,, = [t1 --- tp] wheret; =
S0 [uy(wm, 0;)[2. With the results in [16], the DOA
corresponding to theath frequency is determined by choos-
ing the DOA associated with the maximuin t,,,.

The proposed method for joint DOA and frequency esti-
mation is summarized in Table I.

4. SIMULATION RESULTS

The performance of the proposed algorithm is examined in
this section. We consider a ULA df/ = 8 sensors suc-
cessively separated by a half-wavelength. The noise isewhit
Gaussian process with zero mean and unit variance.

In the first example, we assume that seven signals with
equal powers arrive at the ULA from anglgs= —50°, 0, =
—33.3°%, 03 = —16.7°, 6, = 0°, 05 = 16.7°, 05 = 33.3°
andéd; = 50°. Meanwhile, their frequencies axg = 0.2,
wo = 0.37m, w3 = 047, wy = 0.57, ws = 0.6, wg = 0.771
andw; = 0.87. We setN = 50 andm = 20. The« is ran-
domly generated from Gaussian distribution. The SNR is set
to be 10 dB. Fig. 1(a) displays ten spatial spectra for DOA and
frequency estimation. It is observed that the proposedadeth
successfully estimates the seven DOAs and frequencies. We
now consider a case of two closely spaced signals with fre-
quencyw; = 0.47 andwy = 0.67 located ath; = —2° and
0> = 2°. The other parameters are the same as those in Fig.
1(a). Itis shown in Fig. 1(b) that there are two distinct peak
in both DOA and frequency estimation pseudo spectra.

In the second example, we consider a case whes 8,

N =40, m = 16 and SNR= 10 dB. There are® = 7 signals
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Table 1. Pseudo-code of proposed algorithm N e

(a) DOA Estimation osf :
Step 1: Use (7) to construgly,; } ¥ ;™. o4
Step 2: Employ (13) and (14) to constrigs and
Gy, respectively.

Step 3: Utilize (20) to form the pseudo spectrum al 8
P(0).

Step 4: Estimate the DOAs by searching for the
peaks ofP(6). ‘

(b) Frequency Estimation o0
Step 1: Take the transpose 0¥ ; } ¥ ;™.

Step 2: ConstrudF,, andG., based on (26) and Fig. 22 DOA and frequency estimation for seven targets.
@7). (M =8,m =16, N =40, SNR=10dB, P = 7)
Step 3: Utilize (29) to obtain the pseudo spec-

trum P(w). ) _ ) performance of the proposed method is a little bit infer@or t
Step 4: Estimate the frequencies by searching for i counterparts. Compared to the ESPRIT, JAFE and SLS-

-0.8F 2

L L L L
20 40 60 80

the peaks of’(w). ESPRIT algorithms which rely on trepriori knowledge of
(c) Pair the DOA and frequency estimates using the source number, the main advantage of the proposed approach
procedure in Section 3.3. is that it does not need the source number information. Fhere

fore, it is much more attractive for practical applications

nnnnnnnnnnnnnnnnnnnnnnnnn

%m \) % DOA Estimation
i 10° T T .
HE —O— - Proposed
H P T —%— ESPRIT [4]
o w0 w0 TH o @ ® 0o s 9y ° 10 15 @ \+\ JAFE [5]
_ e e 9 102} RO o ety + - SLS-ESPRIT [6]|
¢ = e
: v J /\ T T I
oIy
MV ol el A 0 T I ——
SNR (dB)
(a) P — 7 (b) P — 2 0 ‘ ‘ Frequency‘Esﬂmanon ‘ ‘
e, o,
Fig. 1. Pseudo output power spectrum. Vertical lines show 8 07| [ T S R e
the true DOAs and frequenciesV(= 8, m = 20, N = 50, T
SNR= 10 dB) ‘ ‘ | e

SNR (dB)

with frequencies bein@.56x, —0.37, 0, —0.87, 0.77, —0.47
and0.37 and DOAs bei'ng—23°, —45°, 1°, 192, 30°, —9° Fig. 3. MSE versus SNR[ = 8, m = 16, N = 40, P = 2)
and50°, respectively. It is seen from Fig. 2 that the proposed
algorithm can correctly pair the frequencies and DOAs.

In the third example, the mean square error (MSE) per-
formance of the proposed scheme is compared with that of 5. CONCLUSION
the ESPRIT [4], JAFE [5] and SLS-ESPRIT [6] methods as a
function of SNR. Consider a scenario where there are two sign this paper, we have devised a joint DOA and frequency esti-
nals with frequencies; = 0.2x andw, = 0.567 located at mation algorithm based on the joint diagonalization stitest
#; = 1° andd, = 10°, respectively. We set; = 0.4+ 0.55,  of a set of transformed data matrices. The most favorable ad-
as = 0.9—-0.7j, N = 40 andm = 16. The SNR is varied vantage of the proposed scheme is that it does not require the
from O dB to 30 dB. Furthermore, we assume that the numbesource number information. Such an advantage is highly de-
of signals is known to the ESPRIT, JAFE and SLS-ESPRITsirable for practical applications since detection of therse
algorithms. It is shown in Fig. 3 that for DOA estimation, the number is usually a very difficult task. Moreover, extensive
proposed and the SLS-ESPRIT schemes achieve almost thenulation results demonstrate that the proposed apptisach
same performance and both of them outperform the ESPRI@ble to provide comparable estimation performance with the
and JAFE algorithms. For frequency estimation, however, thstate-of-the-art methods.
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