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ABSTRACT

Event-related potentials (ERPs) of electroencephalogram (EEG) are
often used as features for brain machine interfaces or for analysis of
brain activities. However, as EEG signals easily suffer from various
artifacts, ERPs are often collapsed and hard to observe. There are
several attempts at using multi-channel EEG signals to enhance EEG
signals of interest and make ERPs more clearly observed. For exam-
ple, a previous work has proposed a blind EEG signal separation
method using a multi-channel Wiener filter designed with a prob-
abilistic generative model of observed EEG signals. This method
copes with the under-determination of EEG signal separation by as-
suming sparseness of each EEG component in the time-frequency
domain. Although this method blindly separates EEG signals into
individual EEG components using time-varying scaled spatial corre-
lation matrices, target EEG components, such as P300 of ERP, are
often known in advance in some applications. In this paper, inspired
by this previous work, we propose a probabilistic EEG signal en-
hancement method using a multi-channel Wiener filter, newly incor-
porating prior information of the spatial correlation matrices related
to the target EEG component in the probabilistic generative model to
improve performance of EEG signal enhancement. An experimental
evaluation for P300 enhancement shows that the proposed method
significantly reduces artifacts.

Index Terms— EEG signal enhancement, ERP, Wiener filter,
spatial correlation prior

1. INTRODUCTION

Electroencephalography (EEG) is the recording of electrical activity
along the scalp. It has been used as a tool for medicine [1], cogni-
tive science [2], and development of new brain machine interfaces
(BMI) [3,4,5]. However, it is often hard to analyze and interpret
EEG signals because of their poor signal-to-noise ratio (SNR). EEG
recordings capture a mixture of endogenous brain activities and ex-
traneous and physiological artifacts such as power grid noise, eye
blinks, or muscle activities, while signals of interest evoked by some
brain activities generally have lower energy than the artifacts [6].
For the above reasons, synchronous signal averaging is often em-
ployed, especially in the study of event-related potentials (ERPs).
The whole recording is cut into smaller intervals containing a single
stimulus. Each of these intervals is called a trial. Trial signals are
averaged synchronously, which attenuates signals from the artifacts
and background brain activities while preserving the amplitude of
signals of interest. However, it is known that the ERP waveforms
have variability between both trials and subjects, so information is
lost by averaging [7].

Thus, techniques of artifact removal or feature extraction from
a single-trial EEG data have become a highly active research topic
in neuroscience, engineering and signal processing [8,9]. One
framework for artifact removal using multi-channel EEG signals is
Independent Component Analysis (ICA) [10]. ICA defines a gener-
ative model for the observed multivariate data, which are assumed
to be linear mixtures of some unknown latent variables. The mixing
system is also unknown. There are two major assumptions in ap-
plying ICA to EEG signals. First, the ICA component projections
are summed linearly at scalp electrodes. Second, the time course
of EEG activity and artifacts are statically independent. ICA has
a limitation of the number of separable signal sources, up to N
sources from N electrodes. However, EEG signals are generated by
numerous synapses, so the number of electrodes is actually much
fewer than sources. This problem is called under-determined and
it is known to be essentially difficult to solve using linear filtering
including ICA.

Another approach uses a multi-channel Wiener filter that has
been proposed in the context of under-determined blind source sep-
aration [12,13] and applies it to EEG signals [14]. In [14], they
define an event as a phenomenon that contributes to an observation
signal, e.g. a cognitive process, an eye blink and so on, and assume
sparseness of each event in the time-frequency domain. They don’t
separate EEG signals into individual signals evoked by sources, but
separate by each event. This approach has the merit that noise re-
duction is done by a time-variant filter, while ICA is a time-invariant
filter. To design such a filter, they use a probabilistic generative
model that models the contributions of each source to all mixture
channels in the time-frequency domain as zero-mean complex Gaus-
sian random variables whose covariance matrix encodes the spatial
characteristics of the source.

In this paper, inspired by this previous work, we propose a prob-
abilistic EEG signal enhancement method using a multi-channel
Wiener filter, newly incorporating prior information of the spatial
correlation matrices related to the target EEG component in the
probabilistic generative model. The previous work blindly separates
EEG signals into individual EEG components using time-varying
scaled spatial correlation matrices without any prior information.
However, target EEG components, such as P300 of ERP, are often
known in advance in some applications. This allows us to obtain
prior information for the estimation of parameters and improve per-
formance of EEG signal enhancement. In addition, we don’t have to
select the target event signal from the separated event signals as in
the conventional blind separation methods including ICA, because
the target signal corresponds to the mixture component with the
target prior distribution.
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2. PREVIOUS WORK

Previous works [12,13] have proposed, in the context of under-
determined blind sound source separation, a blind signal separation
method using a multi-channel Wiener filter designed based on a
probabilistic generative model. This method has been successfully
applied to unsupervised EEG event signal separation using multi-
channel EEG signals [14], which we describe in this section.

2.1. Observation Model

In this paper, we refer to the multi-channel EEG signal related to the
k-th event simply as the “k-th event signal.” Given I channels, the
k-th event signal ck(n, f) = [ck,1(n, f), · · · , ck,I(n, f)]⊤ at time
n and frequency f in the time-frequency domain is expressed as

ck(n, f) =
∑
l∈Ek

hlsl(n, f), (1)

hl = [h1l, · · · , hIl]
⊤ , (2)

where {·}⊤ is the transpose, sl(n, f) is the source signal from vari-
ous sources, such as synapse, muscle, and so on, given by a complex
value, Ek is a set of the sources activated in the k-th event, and hil

is the transfer function from the l-th source to the i-th channel as-
suming that 0 ≤ hil ≤ 1. The observed multi-channel EEG signal
is x(n, f) = [x1(n, f), · · · , xI(n, f)]

⊤ expressed as

x(n, f) =

K∑
k=1

ck(n, f), (3)

where K is the number of events.

2.2. Probabilistic Generative Model

We assume that the probability density function of the source signal
sl(n, f) is modeled by the following zero-mean complex Gaussian
distribution,

p (sl(n, f)) = Nc (sl(n, f); 0, vk(n, f)) , l ∈ Ek, (4)

where the variance vk(n, f) varies in the time-frequency domain de-
pending on the k-th event. Further assuming that the source signals
are non-correlated to each other, the probability density function of
the k-th event signal ck(n, f) is modeled by a multivariate complex
Gaussian distribution as follows:

p (ck(n, f)) = Nc (ck(n, f);0,Rck (n, f)) , (5)

Rck(n, f) = E
[
ck(n, f)ck(n, f)

H
]

(6)

= vk(n, f)Rk, (7)

Rk =
∑
l∈Ek

hlh
⊤
l , (8)

where {·}H is the complex conjugate transpose. The spatial co-
variance matrix Rck (n, f) is factorized into the time-frequency in-
variant spatial covariance matrix Rk and the time-frequency variant
variance component vk(n, f).

We also assume that only one event signal is active in each time-
frequency slot as follows:

x(n, f) = cz(n,f)(n, f), (9)

where z(n, f) is the index of the active event signal. Consequently,
the probability density function of the observation signals x in the

time-frequency domain is modeled by a Gaussian mixture model as
follows:

p(x|θ) =
∏
n,f

p(x(n, f)|θ)

=
∏
n,f

K∑
k=1

αkNc (x(n, f);0, vk(n, f)Rk) , (10)

where αk is a prior probability of the k-th event signal to be active.
The model parameter set θ consists of αk, vk(n, f), and Rk of each
mixture component.

2.3. Event Separation

2.3.1. Model Parameter Estimation

Given the observation signals x, the model parameter set is es-
timated by maximizing the likelihood function of the generative
model given by Eq. (10) as follows:

θ̂ = argmax
θ

p(x|θ). (11)

The EM algorithm can be effectively used in this maximization pro-
cess. In the E-step, the following posterior probability is calculated
at each time-frequency slot,

mk(n, f) =
αkNc (x(n, f);0, vk(n, f)Rk)∑K

k′=1 αk′Nc (x(n, f);0, vk′(n, f)Rk′)
.(12)

In the M-step, the model parameter set is updated as follows:

α̂k =

∑
n,f mk(n, f)∑

n,f,k′ mk′(n, f)
, (13)

v̂k(n, f) =
1

I
x(n, f)HR−1

k x(n, f), (14)

R̂k =
1∑

n,f

mk(n, f)

∑
n,f

mk(n, f)

v̂k(n, f)
x(n, f)x(n, f)H . (15)

Note that v̂k(n, f) and R̂k are iteratively updated as they depend on
each other.

2.3.2. Multi-channel Wiener Filter

Using the estimated spatial covariance matrices related to individual
event signals, a multi-channel Wiener filter is designed as follows:

ĉk(n, f) = R̂ck(n, f)R̂
−1

x (n, f)x(n, f), (16)

R̂ck(n, f) = mk(n, f)v̂k(n, f)R̂k, (17)

R̂x(n, f) =

K∑
k=1

R̂ck(n, f), (18)

where ĉk(n, f) is the k-th event signal separated from x(n, f).

2.4. Problem

This method does not use any prior information for estimation of
spatial correlation matrices and blindly separates EEG signals into
individual EEG components using time-varying scaled spatial corre-
lation matrices. However, target EEG components, such as P300 of
ERP, are often known in advance in some applications, which allows
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us to obtain prior information for the estimation of spatial correlation
matrices. In addition, separated signals have permutation ambiguity,
so we have to select the target event signal from the separated event
signals as in the conventional blind separation methods including
ICA.

3. PROPOSED EEG SIGNAL ENHANCEMENT METHOD

In BMI or analysis of brain activities, we often know which event
we would like to enhance, such as P300 of ERP, motor imagery, or
steady state visual evoked potentials (SSVEP). In such a case, we
need to enhance the target EEG event signal from the observed EEG
signal, rather than blindly separating it into multiple EEG event sig-
nals. Moreover, we can also record EEG signals related to the target
event beforehand and use them as prior knowledge for enhancement.
In this section, we propose an EEG signal enhancement method that
incorporates prior distributions of the spatial covariance matrices to
the conventional blind separation framework.

3.1. Spatial Correlation Prior

The Wishart distribution is known as the conjugate prior distribu-
tion of the precision matrix of a multivariate Gaussian distribution
with known mean vectors. The prior distributions of time-frequency
invariant spatial covariance matrices are designed as follows:

p
(
R−1

k |Ψ−1
k , q

)
=

1

Z
|R−1

k |
q−I−1

2 exp

(
−1

2
Tr

[
ΨkR

−1
k

])
, (19)

where Z is the normalizing constant, Ψk is a I-by-I symmetric pos-
itive definite matrix, and q is the degrees of freedom.

Using previously recorded multi-channel EEG signals related to
a specific event, we can determine the hyper parameters, Ψk and q
as follows:

Ψk =
∑
n,f

x′
k(n, f)x

′
k(n, f)

H , (20)

q = NF, (21)

where x′
k(n, f) is the pre-recorded EEG signal at time n and fre-

quency f , N is the total number of time frames, and F is the total
number of frequency slots.

It is ideal to use the event signal ck but it is essentially difficult to
record such a signal because the recorded EEG signal easily suffers
from multiple events. In this paper, we use carefully recorded EEG
signals to establish a contrast between signals in which the target
event exists or doesn’t exist. For instance, if we apply our proposed
method to P300 ERP enhancement, we record several EEG signals
in which P300 ERP is supposed to be observed and also record EEG
signals in which P300 ERP is supposed to not be observed. Then, we
calculate hyper parameters using each of these to develop the prior
probability distribution for P300 ERP and that for the background
EEG signals, respectively. We may also be able to create prior prob-
ability distributions for other specific events, such as an eye blink.

3.2. EEG Signal Enhancement with Spatial Correlation Prior

Given the observation signals x, the model parameter set θ is es-
timated by maximizing the posterior probability density function
of the time-frequency invariant spatial covariance matrices, R =
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Fig. 1. Visualization of the spatial correlation matrices, the left
is calculated using target trials and the right is calculated using
non-target trials. Both axes represent channels. Darker slots have
stronger correlations.

{R1, · · · ,RK}, as follows:

θ̂ = argmax
θ

p(R|x,θ\R,Ψk, q) (22)

= argmax
θ

∏
n,f

p (x(n, f)|θ)
K∏

k=1

p
(
R−1

k |Ψk, q
)
, (23)

where θ\R is the model parameter set except for R. This maximiza-
tion process can also be effectively solved with EM algorithm. The
following auxiliary function is maximized with respect to θ,

Q =
∑
n,f,k

mk(n, f)
(
log(αk)− I log(vk(n, f))

+ log(|R−1
k |)− 1

vk(n, f)
x(n, f)HR−1

k x(n, f)

)
+

K∑
k=1

(
q − I − 1

2
log |R−1

k | − 1

2
Tr

[
ΨkR

−1
k

])
+ Const. (24)

In the E-step, the posterior probability mk(n, f) is calculated at each
time-frequency slot as shown in Eq. (12). In the M-step, α̂k and
v̂k(n, f) are updated as shown in Eqs. (13) and (14), and Rk is
updated as follows:

R̂k =
1

q − I − 1

2
+

∑
n,f

mk(n, f)

(
1

2
Ψk

+
∑
n,f

mk(n, f)

v̂k(n, f)
x(n, f)x(n, f)H

 , (25)

where v̂k(n, f) and R̂k are iteratively updated as they depend on
each other. Finally, the target event signal is extracted from the ob-
served EEG signals using a multi-channel Wiener filter as described
in Section 2.3.2.

In the proposed enhancement method, we don’t have to select
the target event signal from the separated event signals as in the con-
ventional blind separation method, because the target signal corre-
sponds to the mixture component with the target prior distribution.
We may also deal with event signals not modeled with the prior dis-
tributions by just using additional mixture components without the
prior distributions.
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Fig. 2. Comparison of single-trial EEG waveforms. These are, in the
order of appearance, the raw signal, the signal denoised by the previ-
ous method using no prior, and the signal denoised by the proposed
method.

4. EXPERIMENTAL EVALUATION

4.1. Data Acquisition

The EEG data were recorded from a single subject with 27 channels
at positions of the extended 10/20-System. The measured signal was
digitized at 1000 Hz and downsampled to 200 Hz. We conducted
the oddball paradigm experiment, which is a classical experimental
design evoking an ERP P300. The subject was presented a sequence
of two types of audio stimuli in random order, one is a 2000 Hz
sine wave and the other is a 1000 Hz one. 1000 Hz sounds were
frequently (200 times) presented and 2000 Hz sounds were rare (50
times). The subject was told that the rare 2000 Hz sound was the tar-
get and to count the number of presentations of target stimuli during
the experiment. It has been found that P300 usually appears around
300ms after the target stimuli [15]. After the oddball paradigm, the
subject was told to be relaxed and we recorded an EEG signal during
the resting state for 2 minutes.

Twenty-five EEG signals during target stimuli are chosen at ran-
dom to use learn hyper parameters and the remaining twenty-five
signals are used as test data. The test data are separated using the pre-
vious method without prior and the proposed method. Both methods
assume the number of events K = 2. The learned hyper parameters
are visualized in Fig. 1.

4.2. Evaluation

A comparison of waveforms of a single-trial EEG signal in the time
domain is shown in Fig. 2. It can be seen that the raw signal is
contaminated by artificial spikes. The Wiener filter with no prior
does little to remove these spikes, but the proposed method largely
succeeds in removing them. Consequently, the appearance of ERP
of P300 evoked by target stimuli is more clearly shown.

To perform further quantitative analysis, we assume that the syn-
chronous averaging provides a reasonable approximation for the true
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Fig. 3. Mean of correlation coefficients between the reference signal
and averaged trial signals. The x-axis that is log-scaled with base 2
represents the number of signals averaged. The y-axis is correlation
coefficient

target signal, and use the distance from this signal as an automatic
evaluation measure. To do so, we averaged 25 target trials of EEG
data as a reference signal, and evaluate the performance of the pro-
posed method and previous method with no prior by calculating cor-
relation coefficients between the reference signal and noise reduced
signals with only a single or a few trials.

Fig. 3 illustrates the performance of noise reduction combined
with synchronous averaging. To calculate the correlation coefficients
for each number of signals averaged, we first select 25 random sets
with the appropriate number of signals, average the signals in each
set, measure the correlation coefficient for each averaged signal, then
take the mean of the correlation coefficients for the 25 sets. The
performance of noise reduction of proposed method was superior to
the previous method and generally needs only half as many trials to
achieve a signal of the same quality as previous methods.

5. CONCLUSION

In this study we proposed a method to improve the performance
of parameter estimation of a multi-channel Wiener filter for EEG
signal noise reduction. While previous works doesn’t use a prior
information for the estimation of spatial correlation matrices, we
used a Wishart distribution as a prior. The experimental evaluation
showed the effectiveness of using the prior to estimate the parame-
ters and performance of noise reduction was improved compared to
the method without a prior. Future work will consider setting a prior
distribution for other parameters and adaptation of hyper parameters
learned from other people.
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