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ABSTRACT

This contribution presents a robust approach to acoustic event source
localization for surveillance under reverberant environmental con-
ditions. In particular, we support the classical generalized cross-
correlation algorithm with phase transform weighting (GCC-PHAT)
and the steered response power (SRP) algorithm by a sound activ-
ity detection and an event onset detector. The proposed algorithmic
framework including spatial minimum tracking and smoothing for
the suppression of artifacts in the spatial likelihood function signifi-
cantly outperforms a respective reference approach, decreasing both
the miss ratio by up to 9% absolute, and the average angular estima-
tion error by up to 4◦.

Index Terms— acoustic event source localization, surveillance,
reverberant environment, onset detection

1. INTRODUCTION

Acoustic source localization and acoustic speaker localization have
been intensively investigated in the last years. In several aspects,
the knowledge of the position of speakers or sound sources can be
useful and is consequently employed within a wide range of applica-
tions. In teleconferencing and videoconferencing the speaker’s posi-
tion can be exploited by steering a microphone beamformer or auto-
matically pointing a camera at him [1]. These two applications can
be as well found in the field of smart rooms, where the room itself is
aware of the people inside it [2]. Another promising field is ambient
assisted living, where distributed microphones are employed to help
elderly people, e. g., by fall detection [3]. Furthermore, these tech-
niques can also be used for security aspects [4] or to automatically
direct a robot [5] into the direction of a (moving) sound source.

A considerable number of acoustic sound source localization
methods are available. Most common is the estimation of the time
difference of arrival (TDOA) between two microphone signals. A
state-of-the-art TDOA estimation approach is the generalized cross-
correlation (GCC) method, which is based on the cross-correlation
between two microphone signals. Within this method, several
weighting factors can be employed, of which the phase transform
(PHAT) [6] gives good results under reverberant conditions [7]. A
similar approach is the crosspower-spectrum phase (CSP) method
[8, 9]. To improve the resulting position estimate, optionally, one
could make use of the steered response power algorithm (SRP) [10].
Another option is to employ acoustic beamforming and exploit the
directional pattern of a microphone array [11].

In reverberant environments, the precision of the position esti-
mate may severely be affected by sound reflections. Highest preci-
sion can be achieved in the moment that the direct sound arrives at

the microphone, which requires then to detect the onset of an acous-
tic event. A typical application is musical analysis using phase- and
energy-based onset detection [12, 13]. It is also employed for the
analysis of sounds by taking psychoacoustic knowledge into account
[14]. A further application is the field of auditory scene analysis, us-
ing acoustic event onsets for audio segmentation [15]. Furthermore,
localization tasks make use of signal amplitude-based onset detec-
tion to, e. g., steer a robot [16].

In [17] a GCC-PHAT-SRP-based framework for acoustic speaker
localization with distributed microphones is presented. The obtained
spatial likelihood function (SLF) is spatially filtered and smoothed.
Within these two steps a very simple (not further described) voice
activity detection in the time domain is used to trigger the noise floor
estimation for a Wiener-type filtering. Potential speaker positions
are deleted from the noise floor by a complex threshold operation.

In our present work we rearrange and simplify the approach pre-
sented in [17] to obtain a framework suitable for acoustic event lo-
calization with a microphone array in a far-field context. The tech-
nique is used for surveillance purposes, where the task is to esti-
mate an event sound source location and then steer a camera to it.
The acoustic event source localization presented in this paper should
augment respective image-based processing for higher robustness in
bad visual conditions. As in this work the sound source has to be lo-
cated in the far field, a further step is to change the geometry behind
the computational framework to a spherical coordinate search space.
In addition, we simplify the noise floor estimation in the computa-
tion of the total spatial likelihood function towards a spatial mini-
mum statistics approach. Furthermore the simple time-domain voice
activity detection is replaced by a frequency-domain sound activity
detection (SAD) and an event onset detection (EOD).

The organization of the paper is as follows: In Section 2 we
present the employed new search space, and briefly revisit the GCC-
PHAT and SRP methods. Section 3 details our new event onset de-
tection, the spatial minimum tracking and smoothing process. In
Section 4 the evaluation methodology is presented and the results
are analyzed. Final conclusions are made in Section 5.

2. BASELINE ALGORITHMIC APPROACHES
In this section we introduce the employed signal model and far-field
assumption, the new search space resulting from this, and briefly re-
visit the generalized cross-correlation (GCC) approach, phase trans-
form weighting (PHAT), and steered response power (SRP).

2.1. Signal Model
Given a room, and a rectangular microphone array with a camera
placed in the array center. The position of the acoustic event sound
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source to be localized is assumed in the camera’s field of view. The
array consists of M microphones µ ∈ M = {1, 2, . . . ,M}, pro-
viding output signals yµ(t). The microphones are equidistant and
located at positions rµ = (rxµ, ryµ, rzµ)T, respectively, with (·)T
being the (vector) transpose. The array center is in the origin r=0,
while the array itself is in the x-y-plane. From a sound source posi-
tion rs a signal s(t) is emitted and then convolved with the impulse
response hµ(t) of the room towards microphone µ. Environmental
noise nµ(t) is superimposed leading to the microphone signal

yµ(t) = hµ(t) ∗ s(t) + nµ(t). (1)

The time needed for an arbitrary sound wave to travel from a position
r to the microphone rµ at a velocity of c = 343 m/s is

τµ = τµ(r) =
‖rµ − r‖

c
, (2)

with ‖ · ‖ being the Euclidean norm. Neglecting reverberation for
the moment and setting r = rs in (2), the microphone signal can be
written as

yµ(t) = aµ · s(t− τµ) + nµ(t), (3)

whereby aµ denotes an attenuation factor which is related to air ab-
sorption. The time difference of arrival (TDOA) between two mi-
crophones µ, ν ∈ M, and an arbitrary position r can be written as

τµν(r) = τµ(r)− τν(r) =
1

c
(‖rµ − r‖ − ‖rν − r‖). (4)

2.2. Far Field Assumption and Direction of Arrival
Under the far field assumption made in this work, the array is not
able to resolve the distance ‖rs‖ to the sound source [10], which
generally leads to inaccurate localization results. The solution to
this problem is to transfer the sound source position from a rectan-
gular coordinate representation (depending on the distance ‖rs‖), to
a representation depending on the direction of arrival (DOA) of a
sound wave to the origin. For a position r ∈ R3 this is accomplished
by a spherical coordinate transformation. Neglecting the length ‖r‖,
the so-called propagation vector is defined as

ζ(θ, φ) =
r

‖r‖

cosφ cos θ
cosφ sin θ

sinφ

 ∈ C with ‖ζ(θ, φ)‖ = 1, (5)

with C being the set of all possible vectors ζ, the azimuth angle
−π ≤ θ ≤ π, and the elevation angle −π/2 ≤ φ ≤ π/2. The
definition of the angles follows the standard geographic convention.
The angle-dependent TDOA (far field) can now be written as

τµν(ζ(θ, φ)) =
1

c

[
(rµ − rν)T · ζ(θ, φ)

]
. (6)

2.3. GCC-PHAT
In this paper the generalized cross-correlation (GCC) method in
combination with a phase transform (PHAT) weighting [6] is used
for TDOA estimation. For a pair of microphones (µ, ν), a Hann
window of length K is applied to the sampled signals yµ(n) and
yν(n) with the discrete time index n, and the discrete Fourier trans-
forms (DFTs) Yµ(`, k) and Yν(`, k) with frequency bin k and frame
index ` are computed (the frame index ` will be omitted in the
following). The GCC-PHAT function is then computed by [6]

ϕPHAT
µν (τ) =

1

K

K−1∑
k=0

Yµ(k)Y ∗ν (k)ej2π
kτ
K

|Yµ(k)Y ∗ν (k)| (7)

with (·)∗ denoting the complex conjugate.

2.4. Steered Response Power (SRP)
Due to sound reflections within the room, the TDOA estimate com-
puted by maximizing (7) w. r. t. τ can be inaccurate or even wrong, as
more than one local maximum can exist. To overcome this problem
the steered response power (SRP) [10] method is used here, which
is based on the variation of τ in (7). Under the far-field assumption
the search space C ⊂ R3 is expressed in discretized angles to rep-
resent different directions of arrival (DOAs): The resulting search
space is then given by Q=A×E={(θ, φ)|θ∈A, φ∈E}⊂R2 with
A={θmin, . . . , θmax}, E = {φmin, . . . , φmax}, and × denoting the
Cartesian product. Each pair of angles (θ, φ)∈Q, corresponds to a
specific τµ,ν(ζ(θ, φ)) for each microphone pair (µ, ν) ∈ P ⊂M2.
The ranges of A and E need to be chosen task-dependent. Employ-
ing τ = τµ,ν(ζ(θ, φ)) in (7), leads to ϕPHAT

µν (ζ(θ, φ)), which, ex-
pressed as a function of ζ (and in this way of θ and φ), can be inter-
preted as a spatial likelihood function (SLF) for each pair of micro-
phones (µ, ν). The SLF should show a maximum value belonging
to an explicit DOA ζ. The sum over all microphone pairs (or at least
more than one) gives a more precise DOA estimate, but on the other
hand increases the computational complexity. We will call the sum
of the SLFs over all microphone pairs the total spatial likelihood
function (TSLF) which is expressed as

SP(ζ) =
1

|P|
∑

(µ,ν)∈P

ϕPHAT
µν (τµν(ζ)). (8)

3. PROPOSED ACOUSTIC EVENT LOCALIZATION

After having revisited some basics to DOA estimation in the previous
section, this section introduces additional new components of our
algorithmic framework.

3.1. Sound Activity and Event Onset Detection (SAD, EOD)
In the following the sound activity detection (SAD) and the event
onset detection (EOD) are described, as they will be used later in the
localization process (Section 3.2). Based on noise variance track-
ing, they are derived on the basis of a voice activity detection [18].
For each microphone µ (for better readability the microphone index
will be omitted in wide parts of this subsection), a SAD and an EOD
decision have to be made. Each frame ` of any microphone signal
y(n) is divided into subframes `′∈L′={1, . . . , L′}. The noise vari-
ance σ2

N (`′, k′) is then estimated by a 3–state sound activity detector
(SAD) in the DFT domain, with frequency bin k′∈{0, . . . ,K′/2}.
Let the smoothed periodogram of the microphone signal be

|Y (`′, k′)|2 = βY · |Y (`′−1, k′)|2 + (1−βY ) · |Y (`′, k′)|2

with βY ∈ [0, 1] and Θ(`′, k′) a dynamic threshold. In each sub-
frame one sound activity hypothesis H(`′, k′) is determined out of
three optionsH={HSP, HSA, HST}:
Sound presence HSP is assumed if

|Y (`′, k′)|2 > 2 ·Θ(`′−1, k′).

Sound absence HSA is assumed if

|Y (`′, k′)|2 ≤ 2 ·Θ(`′−1, k′) ∧ |Y (`′, k′)|2 < σ̂2
N (`′−1, k′).

Sound transition HST is assumed if

|Y (`′, k′)|2 ≤ 2 ·Θ(`′−1, k′) ∧ |Y (`′, k′)|2 ≥ σ̂2
N (`′−1, k′).

The noise variance estimate σ̂2
N (`′, k′) is updated as

σ̂2
N (`′, k′) = ε(`′, k′) · σ̂2

N (`′−1, k′) +
[
1− ε(`′, k′)

]
· |Y (`′, k′)|2
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Fig. 1. Microphone array with camera and recording equipment.

with the initial value σ̂2
N (`′ = 0, k′) = 0 and ε(`′, k′) denoting

a time-varying smoothing factor, depending on the sound activity
hypothesis of the previous frame H(`′−1, k′). The time-varying
smoothing factor ε(`′, k′) and thy dynamic threshold Θ(`′, k′) are
chosen according to [18].

Now for each subframe `′ (and channel µ) the decision SADµ(`′)
is made upon the sound activity hypotheses H(`′, k′) in that chan-
nel. We decide for SADµ(`′) = 1 if at least 60% of its frequency
bins in the range [500 Hz, 5000 Hz] are classified by the 3–state
SAD as HSP, otherwise SADµ(`′) = 0.

The single decisions for each subframe `′ need to be joined to a
decision for each frame `. This is done by

SADµ(`) =

{
1, if

∑
`′∈L′ SADµ(`′) ≥ δL′

0, else.
(9)

Finally, the sound activity decisions SADµ(`) are joined to an over-
all sound activity decision

SAD(`) =

{
1, if

∑
µ∈M SADµ(`) ≥ δM

0, else.
(10)

Based upon the subframe sound activity decision SADµ(`′), we pro-
pose an event onset detector (EOD). In a first step the subframe event
onset decision

EOD(`′) =

{
1, if

∏
λ′∈{`′,...,`′+Lmin−1} SADµ(λ′)=1

0, else,

is made. This operation requires a lookahead of Lmin−1 subframes
and ensures that there are at least Lmin consecutive future subframes
marked as active sound. By this means the performance of the whole
framework can be optimized, as single subframes marked as active
sound are ignored and a minimum event length is ensured. Follow-
ing the hierarchy of the SAD, the frame- and channel-wise onset
decision EODµ(`) (c. f. (9)) and the overall event onset decision
EOD(`) (c. f. (10)) are computed. The parameters δL′ , δM, and
Lmin have to be chosen dependent on the task.

3.2. Spatial Minimum Tracking, Smoothing, and Localization

Estimating the DOA by maximizing (8) w. r. t. ζ may still be affected
by acoustic disturbances. Within this work a Wiener-type filter is
used to suppress spatial noise and reverberation.

In case of sound absence (SAD(`)=0) and using frame index `,
the noise floor (NF) of the SLF is simply estimated by (c. f. (8))

SNF,`(ζ) = SP,`(ζ). (11)

In case of sound presence (SAD(`)=1), potential sound source
positions are deleted from the desired noise floor by applying the

θ = −45◦

θ = 10◦
y

x

N

E

E

E

E

E

E
MA

Fig. 2. Lecture hall with positions of the microphone array (MA),
event sources (E), and the noise source (N).

following spatial minimum tracking

SNF,`(ζ) = min

SP,`(ζ),
1

|Cζ |
∑

ζ′∈Cζ

SP,`(ζ
′)

 , (12)

with Cζ = {ζ(θ′, φ′)|θ − δ ≤ θ′ ≤ θ + δ, φ − δ ≤ φ′ ≤ φ − δ}
being the space of vectors ζ(θ′, φ′) belonging to a squared vicinity
of ζ(θ, φ) in the 2-dimensional spherical coordinate space. Indepen-
dent of the SAD decision, in both cases a (temporal) first-order IIR
filter is employed

S̃NF,`(ζ) = βNF · S̃NF,`−1(ζ) + (1− βNF) · SNF,`(ζ), (13)

with the initial value S̃NF,0(ζ)=0, and forgetting factor βNF∈ [0, 1].
In case of no detected event onset (EOD(`)=0), processing for the
current frame ` stops here.

In case of a detected event onset (EOD(`)=1), a spatial a priori
SNR (ξ`(ζ) ≥ 0 c. f. (12))

ξ`(ζ) =
S2
P,`(ζ)− S̃2

NF,`(ζ)

S̃2
NF,`(ζ)

(14)

is calculated. This a priori SNR can now be used to compute a
Wiener-type spatial weight and to obtain an enhanced SLF

Sopt
P,`(ζ) = SP,`(ζ) · ξ`(ζ)

1 + ξ`(ζ)
. (15)

Even the enhanced spatial likelihood function Sopt
P,`(ζ) may still

show several local maxima, therefore, we propose to smooth it with
a 2-dimensional Gaussian lowpass filter in the spherical coordinate
system leading to the smoothed SLF

S
opt
P,`(θ, φ) =

(
1

2πσ2
e
− θ

2+φ2

2σ2

)
∗ S opt
P,`(ζ(θ, φ)) (16)

with ∗ denoting the convolution operation. Finally, the estimated
DOA in terms of θ and φ is given by

ζ̂ = ζ(θ̂, φ̂), with (θ̂, φ̂) = arg max
(θ,φ)∈Q

S
opt
P,`(θ, φ) (17)

and is estimated only in frames with EOD(`) = 1. As the search
spaceQ is spanned by only two angles (θ, φ) we in fact end up with
a 2-dimensional optimization.

4. EVALUATION SETUP AND RESULTS

4.1. Array Setup and Data Acquisition
For our experiments, a microphone array (see Fig. 2, MA) was
placed in a medium size lecture hall. The array consists of 4×4=16
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SNR

0 dB 5 dB 10 dB 15 dB 20 dB ∞

REF-str 28.04 24.37 22.84 20.37 19.72 18.59REF-bab 63.59 57.92 53.31 49.15 45.63

SAD-str 24.26 22.21 21.63 19.37 19.01 17.51SAD-bab 61.70 56.34 52.11 48.57 45.06

EOD-str 18.76 17.33 17.62 15.67 16.08 17.10EOD-bab 59.17 53.55 49.04 45.26 41.21

Table 1. Miss ratio (MR) in percent, for the reference framework
REF and our two new approaches.

microphones, equidistantly arranged with 10 cm spacing, with a
camera being placed in the center (see Fig. 1). The recordings were
made at a sampling frequency of 48 kHz and later downsampled
to 16 kHz for simulations. At 6 room positions (E) 10 files of 50
classes from the RWCPSSDRAE database [19] were played back
by a broadband loudspeaker positioned with the membrane facing
the array. In addition two types of noise (babble noise (denoted as
’bab’) from the NOISEX-92 database [20] and street noise (denoted
as ’str’) from the NTT Ambient Noise database [21]) were played
back at a seventh position in the back of the room (N).

4.2. Algorithm Setup and Evaluation Methodology
For our evaluation, the recorded acoustic events were split into three
sets: development (20%), development-test (20%), and test (60%).
In consequence, all results given in this paper are averaged over
6 positions × 6 files × 50 classes = 1800 different single acoustic
events. To explore the influence of noise to the proposed algorithm,
different signal-to-noise ratios (SNRs) where chosen and processed.

For evaluation we use two common metrics, based on the Eu-
clidean distance of the estimated (θ̂, φ̂) to the original DOA (θ, φ)
in degrees

∆DOA =

√
(θ̂ − θ)2 + (φ̂− φ)2.

At first the miss ratio (MR) is calculated for each test case, giving
the percentage of position estimates where ∆DOA > 3◦. Second,
the average estimation error (AEE) is calculated as the average over
all ∆DOA. All parameters were optimized on clean and 10dB SNR
data, minimizing the miss ratio on the development-test dataset in
each case, as in our use case it is most important to recognize an
event within ∆DOA ≤ 3◦.

The reference (baseline) results are calculated by the framework
from [17], modified for DOA estimation using the DOA search space
and our frequency-domain sound activity detection, henceforth listed
’REF’. Our new framework without using the event onset detection
is listed as ’SAD’: Localization is then performed in any frame with
SAD(`) = 1. The third framework dubbed by ’EOD’ is the whole
framework presented in this work, including all functions as pre-
sented in Section 3: SAD, EOD, spatial minimum tracking, smooth-
ing, and then localization. All three frameworks use the following
parameters: GCC-PHAT-SRP framelength K = 4096 (no overlap),
SAD/EOD framelength K′ = 512 (overlap 256 samples) resulting
in L′ = 16, βy = 0.1, δL′ = 9, δM = 2, Lmin = 3, the vicin-
ity of ζ is given by δ = 3, spatial noise floor smoothing constant
βNF = 0.9, smoothing filter standard deviation σ = 3◦. Through
the optical specifications of the camera in the array’s origin, and
as the source position should be used to steer a second camera the
searchspace Q is spanned by A = {−55◦,−54◦, . . . , 55◦} and
E = {−47◦,−46◦, . . . , 47◦}. To reduce computational costs, only
M = 4 microphones at the four corners of the array were used for
the experiments.

SNR

0 dB 5 dB 10 dB 15 dB 20 dB ∞

REF-str 15.07 14.63 14.31 13.20 12.80 10.16REF-bab 30.76 30.69 30.06 29.65 28.30

SAD-str 14.20 13.92 13.86 12.83 12.42 10.16SAD-bab 31.83 31.63 30.92 30.34 28.52

EOD-str 11.06 10.85 11.27 10.26 10.30 9.90EOD-bab 30.75 30.51 29.50 28.88 26.58

Table 2. Average estimation error (AEE) of missed frames in de-
grees, for the reference framework REF and our new approaches.

4.3. Evaluation Results and Discussion
At first, have a look at the miss ratio (MR) in Table 1, a measure for
the robustness of the localization algorithm. It is clearly visible that
our new SAD framework decreases the miss ratio by about 1% in
clean condition, compared to the REF framework. Also in noisy con-
ditions the miss ratio is decreased. For street noise the improvement
amends to 0.7% . . . 3.8%, and for babble noise to 0.6% . . . 1.9%.

Now compare the SAD to the EOD framework. Through the
introduction of the event onset detection the miss ratio can be further
decreased. Under clean condition the gain amounts to 0.4%. For
street noise the miss ratio is further decreased by about 3% . . . 5.5%.
Under the influence of babble noise it amounts to 2.5% . . . 3.8%.

Directly compared to the REF framework, the EOD framework
significantly decreases the miss ratio under noisy conditions, gaining
an absolute improvement of about 3.6% . . . 9.3% under street noise
and 3.9% . . . 4.5% under babble noise. Obviously the EOD frame-
work clearly outperforms the REF framework in all SNR and in all
noise conditions.

As the main goal of the proposed algorithm is to gain a high
recognition rate of events and to localize them close to the original
location, the miss ratio is the most important performance measure.
Nevertheless, now have a look at the average estimation error (AEE)
for missed frames in Table 2 for the evaluation of the precision of
the proposed algorithm. Here the goal should be to lower this error
as in this way all position estimates become more precise. We ob-
serve that the REF framework and the SAD framework perform in
the same range. Under street noise the SAD framework is slightly
more precise gaining about 0.4◦ . . . 0.8◦, whereas for babble noise
the REF framework is slightly better by about 0.4◦ . . . 1◦.

For the EOD framework compared to the REF framework, a sig-
nificant improvement in street noise (up to 4◦), and still a slight im-
provement in babble noise are observed.

Altogether we can summarize, that the proposed new EOD
framework clearly outperforms the REF framework both in miss
ratio and average estimation error. For street noise the new EOD
approach performs approximately equally in the whole investigated
SNR range.

5. CONCLUSION

In this paper we derived a framework for acoustic event source lo-
calization with a microphone array. A GCC-PHAT-SRP framework
is supported by a frequency-domain sound activity detection and
event onset detector. For the suppression of artifacts in the spatial
likelihood function, spatial minimum tracking and smoothing are
employed. The new framework clearly outperforms the reference
approach, by reducing both the miss ratio up to 9% absolute, and
increasing the overall precision in non-stationary noise and several
signal-to-noise ratios by up to 4◦.
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