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ABSTRACT
Distributed cooperative network location estimation in mo-
tionless and mobile narrowband wireless sensor networks
(WSNs) is studied, where agents (to be localized) are several
hops away from the anchors (with a priori known location).
This work proposes a reduced-communication cooperative
and distributed particle filtering (CoopPF) approach based
on variational inference (VI) Gaussian mixture modeling
(GMM), where network nodes exchange information locally,
i.e. only with neighboring terminals; each node transmits
the parameters of the estimated Gaussian mixture, instead
of the whole posterior density, offering tremendous reduc-
tion in communication overhead, as required in narrowband
applications (e.g. underwater communications). The pro-
posed VI approach jointly estimates the number of required
Gaussians and their parameters, in sharp contrast to standard
expectation-maximization techniques, where the number of
components must be estimated first with other techniques
(e.g. clustering). Accuracy comparable to state-of-the-art
PF cooperative localization is demonstrated, with an order of
magnitude reduction in communication overhead.

1. INTRODUCTION
Cooperative localization, i.e localization where agents (of
unknown location) perform ranging and exchange measure-
ments with other neighboring agents and possibly with an-
chors (of a priori known location), has been the focus of
intense research over the last years. Distributed location es-
timation techniques include distributed particle filtering (PF)
[1, 2] as well as factor graphs (FG) [3]. Estimation accuracy
offered by the aforementioned setups comes at the cost of
increased communication overhead, since the transmission
of posterior location estimate distributions is communication
bandwidth-intensive.

As a response, distributed PF implementations with pos-
terior approximations have been proposed, that reduce com-
munication overhead. Such approximations are usually ac-
complished by parametric techniques with Gaussian mixture
modeling (GMM). For example, work in [4] proposes a dis-
tributed PF utilizing GMM and expectation-maximization
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(EM) assuming apriori known number of Gaussian compo-
nents, while work in [5] approximates posterior distributions
with a single Gaussian distribution (assuming availability of
a global navigation satellite system-GNSS). Relevant work
can also be found in [6], where the authors proposed para-
metric representation of posteriors as a multivariate Gaussian
distribution. Finally, works in [7, 8] utilize clustering and
sample-based techniques to estimate the number of Gaussian
components, and then through EM, the posterior location es-
timates are approximated as GMMs. If the EM algorithm is
executed with an excessively large number of mixture com-
ponents, it may produce communication redundancy (due to
large number of utilized mixtures), while a smaller number
of components may offer reduced accuracy [8].

In sharp contrast to the above, this work proposes GMM
based on variational inference, in order to minimize the infor-
mation communicated between nodes and infer the required
number of Gaussians in the mixture that approximates the
node posteriors for motionless and mobile network localiza-
tion. More importantly, simulation results quantify the im-
pact of accuracy-communication trade-off within the GMM
framework and corroborate the efficiency of the proposed
variational approach. The latter offers comparable accuracy
compared to state-of-the-art nonparametric cooperative PF
(CoopPF) localization.

The paper is organized as follows: Section 2 provides
the system model and basic assumptions, Section 3 presents
the CoopPF procedure and then, offers the proposed paramet-
ric variational GMM PF-based cooperative localization algo-
rithm. Section 4 discusses the numerical results and work is
concluded in Section 5.

2. SYSTEM MODEL

A network of N + NA nodes is assumed, with N agents of
unknown locations (to be estimated) and NA anchors with
a priori known coordinates. Time is slotted and the set of
all nodes at time instant t is denoted as H(t), while the set
of nodes with a communication link to an arbitrary node i is
denoted as H(t)(i). The true 2-dimensional (2D) coordinates
of node i at time t are represented by a time-dependent state
vector x

(t)
i = [x

(t)
i y

(t)
i ]T (i.e., dimension D = 2).

It is assumed that at time t each node i can measure vector
z
(t)
i

4
= [(z

(t)
i,self)

T (z
(t)
i,rel)

T ]T , where z
(t)
i,self is based on internal

measurements (e.g. odometer) and z
(t)
i,rel is the vector of range
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measurements between node i and neighbors in H(t)(i). In
this work, the ranging measurements between nodes i and j
are modeled as:

d̂
(t)
j→i = d

(t)
j→i + w

(t)
j→i, (1)

where d(t)j→i = ‖x
(t)
i − x

(t)
j ‖2 is the Euclidean distance be-

tween nodes i and j, while w(t)
j→i are independent, zero-mean

Gaussian random variables with variance σ2
r , assumed inde-

pendent of past and present states. Each agent i aims to cal-
culate the posterior distribution of its state x

(t)
i ,∀t, condi-

tioned on all measurements up to time t, p(x(t)
i |z

(1:t)
i ), i =

1, 2, . . . ,N . Calculating the mean of the posterior offers the
minimum mean squared error estimate of the node’s position
at time t.

3. A VARIATIONAL INFERENCE GMM APPROACH
FOR COOPERATIVE LOCALIZATION

3.1. Cooperative Particle Filtering (CoopPF) Revisited

The cooperative particle filtering (CoopPF) approach tracks
the state of each node as it evolves over time and involves
iterative exchange of location estimates among neighboring
nodes [8]. In a distributed implementation, each node i main-
tains a population of M weights wi,t = {w[m]

i,t }Mm=1, as well

as M location samples X (t)
i = {x[m]

i,t }Mm=1 - the particles
- that represent the possible locations of that node at time
t, with possibility of particle x

[m]
i,t proportional to its corre-

sponding weight w[m]
i,t . The posterior p(x(t)

i |z
(1:t)
i ) can be

constructed from particles and weights using the histogram
approach. The posterior is approximated using a discrete grid
of regions of area δ2 each; the posterior value at each grid re-
gion is proportional to the sum of weights from all particles
that fall within that region. We denote byHist(wi,t,X (t)

i ) the
function that produces the histogram.

Assuming that nodes move independently according to
a memoryless walk, the particle set X (t)

i , at time t, is con-
structed through X (t−1)

i . Specifically, the new m-th particle
of node i is generated according to the (known) state transi-
tion distribution, which is based on the previousm-th particle:

x
[m]
i,t ∝ p

(
x
(t)
i = x

[m]
i,t | x

(t−1)
i = x

[m]
i,t−1 ∈ X

(t−1)
i

)
. (2)

Note that the aforementioned step (referred to as prediction)
can be performed individually by each node.

For each new particle x
[m]
i,t of each node i, a new weight

w
[m]
i,t must be calculated for the set of collected ranging mea-

surements, as well as internal measurements z
(t)
i,self in what

is known as the correction operation. Assuming indepen-
dence between ranging and internal measurements, as well as
independence between ranging measurements, the following
holds:

w
[m]
i,t =p

(
z
(t)
i | x

[m]
i,t

)
=p
(
z
(t)
i,self| x

[m]
i,t

) ∏
j∈H(t)(i)

p
(
d̂
(t)
j→i| x

[m]
i,t

)
=

(∫
p
(
z
(t)
i,self| x

(t−1)
i ,x

[m]
i,t

)
p̂
(
x
(t−1)
i |z(1:t−1)i

)
dx

(t−1)
i

)
·

·
∏

j∈H(t)(i)

(∫
p
(
d̂
(t)
j→i| x

[m]
i,t ,x

(t)
j

)
p̂
(
x
(t)
j |z

(1:t)
j

)(l−1)
dx

(t)
j

)
. (3)

For the calculation of p
(
d̂
(t)
j→i|x

[m]
i,t

)
node i integrates the

known conditional probability density function (p.d.f.) of
the measured distance d̂

(t)
j→i between itself and neighbor

j ∈ H(t)(i) at time t and the posterior estimate of node j.
During each time step t, each node stores a representation
of its most up to date posterior denoted as p̂(x(t)

i |z
(1:t)
i )(l).

Within the same time step, nodes broadcast their posteriors (in
parallel) and receive posteriors from neighbors. The received
posteriors are then utilized in conjunction with the ranging
measurements at time t and through Eq. (3) all nodes update
the histogram representation of their own posterior. The pos-
teriors are then broadcasted back to the network, hence the
superscript l above. AfterNiter iterations, the parallel iterative
correction operation terminates and the node posteriors are
offered by p(x(t)

i |z
(1:t)
i ) ≡ p̂(x(t)

i |z
(1:t)
i )(Niter), ∀i ∈ N .

Functions p(z(t)i,self| x
(t−1)
i ,x

[m]
i,t ) and p(x

(t−1)
i |z(1:t−1)i )

(second line of Eq. (3)) are used for the calculation of p.d.f.
p
(
z
(t)
i,self| x

[m]
i,t

)
. Both of them, are local to node i and can

be calculated with sensor i’s own information. The former
is the conditional p.d.f. of the internal measurement of node
i at time t while the later is simply the posterior distribution
of node i’s state computed during time t − 1. CoopPF algo-
rithm also includes a resampling of the particles and in this
work, the low variance sampler is utilized [9]. The resulted
weights of the new particles have intelligently incorporated
the measurements, offering for M → ∞ a representation of
the unknown posterior.

3.2. Variational Inference for GMMs in CoopPF

The iterative exchange of posteriors between nodes is a com-
munication intensive process due to the fact that each trans-
mitted posterior maps RD 7→ R and thus, significant amount
of communication overhead is required for transmission. The
information communicated between nodes can be minimized
through parametric approximations of the broadcasted poste-
riors, offering tremendous communication gains. Gaussian
mixture models (GMM), defined as a weighted combination
of Gaussian densities, are an attractive choice as flexible para-
metric approximations to any given density.

During each iteration l and for each agent i, variational
CoopPF algorithm approximates the posterior p̂(x(t)

i |z
(1:t)
i )(l)

as a two-dimensional GMM of K components with p.d.f.

p̂
(
x
(t)
i |z

(1:t)
i

)(l)
≈

K∑
k=1

πik N
(
x
(t)
i ;µik, (Λik)

−1
)
, (4)
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Algorithm 1: Variational CoopPF (V-CoopPF)

(1): Input: X (0)
i , ∀i ∈ H(t=0) and the number of particles M .

(2): for t = 1 : T (time index)
(3): for ∀ i ∈ H(t) in parallel
(4): Construct X (t)

i based on X (t−1)
i through Eq. (2).

(5): Construct parameter vector p(0)
i of node i at iteration l = 0 calculated

through Eq. (10) based on X (t)
i .

(6): end parallel
(7): for l = 1 to Niter iterate
(8): for ∀ i ∈ H(t) in parallel
(9): Broadcast p(l−1)

i associated with p̂
(
x
(t)
i |z(1:t)i

)(l−1).
(10): Receive p

(l−1)
j and create p̂

(
x
(t)
j |z(1:t)j

)(l−1) through Eq. (4),
∀j ∈ H(t)(i).

(11): Calculate w
[m]
i,t for each particle x

[m]
i,t through Eq. (3).

(12): X (t)
i := LowVarianceSampler

(
wi,t,X

(t)
i

)
[9].

(13): if (l < Niter) calculate p
(l−1)
i from X (t)

i through Eq. (10).
(14): else (l = Niter) p̂

(
x
(t)
i |z(1:t)i

)(l)
= Hist{1M/M,X (t)

i }.
(15): end parallel
(16): end for
(17): end for (time index)

where πi = {πik} denotes the scalar mixture weights, µi =
{µik} denotes the component means and Λi = {Λik} de-
notes the precision (inverse covariance) matrices. We de-
fine the compound vector of the parameters corresponding
to p̂

(
x
(t)
i |z

(1:t)
i

)(l)
as p

(l)
i , {πi,µi,Λi}. The number of

mixture components K is assumed a-priori unknown and the
estimation of all necessary parameters relies only on the re-
sampled particle set X (t)

i .
The most common technique to estimate the parameters

p
(l)
i in Eq. (4) is through expectation-maximization (EM).

However, in cases where the number of components K is
unknown, EM is not a suitable option. This work proposes
a variational inference Bayesian GMM estimation approach
that can overpass such problem and the number of compo-
nents can be estimated during the variational inference proce-
dure [10, pp. 481]. The variational GMM inference algorithm
can be initialized by a relatively large number of mixture com-
ponents (K) and as iterative steps proceed, such redundancy
is eliminated.

The variational approach utilizes a latent variable ω[m]
i,t ∈

{0, 1}K for each particle x
[m]
i,t ∈ X

(t)
i representing the mix-

ture component responsible for generating the particle. The
K elements of ω[m]

i,t are such that [ω[m]
i,t ]k = 1 when x

[m]
i,t has

been generated by the k-th component and zero otherwise.
The set of latent variables is denoted as Ω

(t)
i = {ω[m]

i,t ; 1 ≤
m ≤ M}. Within variational GMM framework the parame-
ters θi , {Ω(t)

i ,πi,µi,Λi} are treated as stochastic, whose
priors belong to specific parametric distributions that enjoy
special properties. Specifically, the joint p.d.f. of X (t)

i and θi
is assumed to factorize as:

p
(
X (t)

i ,Ω
(t)
i ,πi,µi,Λi

)
= p

(
X (t)

i |Ω
(t)
i ,µi,Λi

)
p (πi) ·

· p
(
Ω

(t)
i |πi

)
p (µi|Λi) p (Λi) (5)

where,

p(X (t)
i |Ω

(t)
i ,µi,Λi)=

M∏
m=1

K∏
k=1

N (x
[m]
i,t ;µik,Λik)

[ω
[m]
i,t ]k , (6)

while the rest priors (associated with parameters θi) are fac-
torized as p(θi) = p

(
Ω

(t)
i |πi

)
p(πi)p(µi|Λi)p(Λi),

p(θi) =

(
M∏

m=1

K∏
k=1

π
[ω

[m]
i,t ]k

ik

)(
Dir(πi;α0)

)
·

·

(
K∏

k=1

N
(
µik;0, (β0Λik)

−1))( K∏
k=1

W
(
Λik; ν0,W0

))
. (7)

SymbolW(·; ν0,W0) denotes the Wishart distribution para-
metrized by variables ν0 and W0, while Dir(·;α0) denotes
the Dirichlet distribution parametrized by vector α0 [10,
Appendix B]. The initial values of distribution parameters
{β0, ν0,W0,α0} are omitted here due to space constraints,
and can be found in [10, pp. 474–475]. The priors of Eq. (7)
are also called conjugate priors.

The standard variational estimation approach aims to
maximize the lower bound L(q) of the logarithmic marginal
likelihood ln

(
p
(
X (t)

i

))
= L(q) + KL(q||p),

L(q) =
∫
q(θi) ln

p
(
X (t)

i ,θi

)
q(θi)

 dθi. (8)

The above quantity is a lower bound on ln
(
p
(
X (t)

i

))
for

any possible distribution on θi (denoted by q(θi)). This
observation stems from fact that Kullback–Leibler diver-
gence between q(θi) and p

(
X (t)

i

)
, given by KL(q||p) =

−
∫
q(θi) ln

(
p
(
θi|X (t)

i

)
q(θi)

)
dθi, is always non-negative for any

possible q(θi). For mathematical convenience, variational
approach assumes that the maximization of L(q) is carried
out over all possible distributions q(θi) that adhere to the fol-
lowing factorization: q(θi) = q(Ω

(t)
i )q(πi)q(µi|Λi)q(Λi).

It turns out that if the priors are initialized through Eq. (7),
then, the optimal distribution q∗(θi) that maximizes L(q) is
given by

q∗(θi) = q∗
(
Ω

(t)
i

)
q∗(πi) q

∗(Λi) q
∗(µi|Λi)

=

(
M∏

m=1

K∏
k=1

r
[ω

[m]
i,t ]k

km

)(
Dir(πi;α)

)( K∏
k=1

W
(
Λik; νk,Wk

))
·

·

(
K∏

k=1

N
(
µik;mk, (βkΛik)

−1)) . (9)
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Fig. 1. Variational CoopPF offers accuracy and communication gains. Left: RMSE as a function of ranging noise standard
deviation σr for a motionless network. Right: RMSE as a function of time for a mobile network and fixed value of σr.

The intuition here is that the initialization of the parameters
θi through Eq. (7), leads to optimal distribution q∗(θi) that
has simple factorization form (of Eq. (9)), which in turn has
the same form with the product of conjugate priors of Eq. (7).
The mathematical machinery in this section is introduced
to find tractable update expressions for density parameters
{rkm}M,K

m,k=1, {αk,mk, βk, νk,Wk}Kk=1 in Eq. (9), omit-
ted here due to space constraints (and can be found in [10,
pp. 476–479]. The variational update equations are coupled
and must be solved iteratively. The update rules on density
parameters are iteratively applied until a change less than
a predetermined threshold ε in the value of L(q∗) between
successive updates is found. The final values of the estimated
mixture parameters of Eq. (4), {π̂ik, µ̂ik, Λ̂ik}Kk=1, are finally
given by (k = 1, 2, . . . ,K):

π̂ik =

∑M
m=1 rkm
M

, µ̂ik = mk, Λ̂ik = νkWk. (10)

4. NUMERICAL RESULTS

Numerical results are provided for 2D localization for both
static and mobile scenarios. The 30 × 30 topology of [8,
Fig. 1] with 20 agents and 4 anchors is considered with grid
resolution δ = 1m. The reported root mean squared error
(RMSE) has been calculated after 500 experiments per re-
ported noise standard deviation. For static/mobile scenarios
the number of particles used is M = {3000, 300}, respec-
tively.

Fig. 1-left offers the RMSE calculated across all agents,
as a function of the ranging noise standard deviation σr. It
is observed that utilizing 2 Gaussian mixtures (GMs) with
EM degrades performance compared to V-CoopPF, verify-
ing that parametric approximations need to be designed more
carefully. On the other hand, it is shown that the proposed
algorithm offers RMSE similar to CoopPF, even though V-
CoopPF utilizes exchanged messages of significantly reduced
size. It is remarked that CoopPF schemes (solid lines) offer

Table 1. Communication requirements and RMSE for static
scenario and σr = 0.8660

Algorithms RMSE [m] Average real numbers
CoopPF 3.5504 ∼ 40362

V-CoopPF 3.6041 ∼ 1576
2-GMM CoopPF 3.8897 ∼ 532
6-GMM CoopPF 3.7687 ∼ 1596

Hybrid GNSS 5.9648 ∼ 240

smaller RMSE compared to the technique in [5] (dashed line),
since the latter was designed for networks with dense anchor
deployment.

Table 1 offers the size of the exchanged messages among
all nodes and the corresponding RMSE across all agents for
σr = 0.8660. The size of the messages is expressed as the
total real numbers broadcasted in the network. V-CoopPF re-
duces the total numbers of exchanged information 1 order of
magnitude compared to CoopPF.

Finally, a 2D tracking scenario is considered, in which
agents begin with perfect prior location. The latter are mo-
bile and during each time step travel a known distance d(t)i ∼
N (0, 1), in an unknown direction θ(t)i ∼ U [0, 2π),∀i, with
σr = 0.8. Fig. 1-right offers the RMSE as the state evolves
over T = 10 time steps. V-CoopPF as well as CoopPF with
2 and 6 GMs achieve slightly improved RMSE performance
compared to the CoopPF because only 300 particles are uti-
lized for the calculation of particle weights. As expected, V-
CoopPF offers lower RMSE compared to CoopPF with 2 and
6 GMs due to more careful mixture modeling.

5. CONCLUSION

This work designed a novel variational inference GMM-based
cooperative particle filter for cooperative node localization.
Total communication overhead was reduced, with accuracy
comparable to state-of-the-art PF cooperative localization.
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