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ABSTRACT
In the literature of direct blind geolocalization algorithms,
two algorithms are mainly concurrent: DPD and LOST. The
first one appears to be very sensitive to the spectral con-
tents and the second, although presenting wide scope of
scenarii with better performance than DPD, does not ex-
ploit the TDoA. This last algorithm could therefore be again
improved. The purpose of this paper is to propose a new al-
gorithm LOST-FIND which exploits (for non monochromatic
sources) the structured TDoA between stations thanks to a
spectral estimation of sources. The proposed algorithm is an
iterative extension of LOST algorithm initially designed for
monochromatic sources. Simulations confirm the expected
improvements versus DPD and LOST.

Index Terms— AoA estimation, TDoA, direct geolocal-
ization, performance

1. INTRODUCTION
The context of this work is the geolocation of multiple radi-
ating sources with multiple separated arrays (also called sta-
tions). Traditional technics [1] rely on a two steps strategy
where measurements such as Angle of Arrival (AoA), Time
Differential of Arrival (TDoA), Frequency Differential of Ar-
rival (FDoA), etc. are obtained from each array in a first step
and combined in a second step to estimate the sources po-
sition. The sources impingings on each station are assumed
to be narrowband and far-field. For instance, the AoAs of
sources are estimated by each station independently in the
first step and, in a second step, the locations of source are
computed from the AoAs (e.g., by triangulation) [1].

However, such 2-steps methods present drawbacks [3]
and are generally less efficient than the direct algorithms
(1-step methods) [4]-[8]. The recently direct geolocation
algorithms [7], [8] use the array of arrays (global array) to
directly estimate the sources locations. Unfortunately, the
sources are generally wideband with respect to that global
array [12]. These algorithms transform this broadband prob-
lem into narrowband problems in order to efficiently apply
algorithms such as MUSIC [2]. For that, DPD (Direct Po-
sition Determination) [7] decomposes the received signal
into K narrowbands subsignals and LOST (LOcalization by

Space-Time) [8] uses a space-time approach. Even if the
DPD exploits the TDoA of sources between stations, its prin-
cipal drawback consists in the high spectrum sensitivity in the
sense that an absence of signal or even a low SNR on a FFT
bin (subband) leads to outliers on the position estimation. On
the other hand, the LOST algorithm has not this drawback
as it has been designed to be spectrum adaptive and, conse-
quently, it is not sensitive to the source spectrum. Moreover,
in the case of monochromatic sources, it is optimal. In pres-
ence of non monochromatic sources it would be interesting
to exploit the TDoA between stations.

The purpose of this paper is to propose a new algorithm,
named LOST-FIND (LOcalization by Space Time with Fre-
quency Identification in Narrowband Decomposition), which
is spectrum adaptive and explicitly exploits the TDoA struc-
ture contained in the model. For that, we start with the
space-time approach of LOST and exploit the modeling of
the space-time observation in order to use in one hand the
TDoA and in a second hand a source selectivity into the
frequency domain.

2. SIGNAL MODELING AND PROBLEM
FORMULATION

2.1. Signal Modeling and hypothesis
The global geolocation system is composed of L perfectly
synchronized remote stations with Ml sensors for 1 ≤ l ≤ L.
In presence of Q sources, the associated observation vectors,
xl(t), whose components xlm(t) (1 ≤ m ≤ Ml) are the sig-
nals complex envelopes at the output of the antennas stemmed
from the Line of Sight (LoS) assumption, are thus:

xl(t) =

Q∑
q=1

ρl,qal(θl(pq))sq(t− τl(pq)) + nl(t) (1)

where sq(t) is the complex envelope of the q-th source, nl(t)
is a spatially white noise vector and al(θl(p)) is the steering
vector, noted al(p) in the remainder of the paper. In addition,
ρl,q, θl(pq) and τl(pq) are the complex attenuation, the AoA
and Time of Arrival (ToA) of the q-th source arriving on the
l-th station respectively. Let us note ∆τij(p) = τi(p)−τj(p)
the TDoAs. The carrier (resp. sampling) frequency of xlm(t)
is f0 (resp. Fe). For sake of simplicity the signal of the q-th
source is:
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sq(t) =

Kq∑
k=1

αqke
i2πfqkt and |fqk| ≤

Fe
2

(2)

where fqk and αqk are the residual frequency and attenuation
of the k-th component of the q-th source. The sources are
decorrelated between each other. Then, the associated band-
width is Bq = maxk(fqk)−mink(fqk).

The direct geolocation algorithms use the global array and
the associated observation vector is then:

x (t) =
[
xT1 (t), ...,x

T
L(t)

]T
(3)

where (·)T denotes the transpose operator. For a given source
location pq , the global observation is generally broadband as
|sq(t− τ1(pq))| , ..., |sq(t− τL(pq))| are different. That is
why a conventional narrowband algorithm [2] cannot be used
to estimate pq from x(t). More precisely, the narrowband
hypothesis is verified on the global array if and only if:

max
q,i,j
|τi (pq)− τj (pq)| ×Bq � 1 (4)

2.2. Space-Time observation
A space-time observation takes into account that the signal
x(t) is broadband in general. Let us define:

y(t) =
[
xT (t),xT (t− Te), ...,xT (t− (K − 1)Te)

]T
(5)

where Te is the sampling period such that Te = 1
Fe

. Accord-
ing to Eq.(2), the signal sq(t− τl(pq)− (j − 1)Te) is:

sq(t−τl(pq)−(j−1)Te) =
Kq∑
k=1

sq,k (t) c
j−1(fqk)zl(pq, fqk) (6)

with c (f) = e−i2πfTe , zl(p, f) = e−i2πfτl(p) and sq,k (t) =
αqke

i2πfqkt. The space-time observation of Eq.(5) becomes:

y(t) =

Q∑
q=1

Kq∑
k=1

v(pq, fqk,ρq)sq,k(t) + n(t) (7)

where ρq = [ρ1,q, ..., ρL,q]
T and{

v(pq, fqk,ρq) = c(fqk)⊗ u(pq, fqk,ρq)

u(pq, fqk,ρq) = U(pq)Λ(pq, fqk)ρq
(8)

with

U(p) =

a1(p) · · · 0
...

. . .
...

0 · · · aL(p)

 , c(f) =
 c0(f)

...
cK−1(f)

 (9)

Λ(p, f) =

z1(p, f) · · · 0
...

. . .
...

0 · · · zL(p, f)

 (10)

Thanks to Eq.(7), one could remark that the space-time
observation is composed of a finite number of steering vectors
v(pq, fqk,ρq) depending on the frequency fqk as in a context
of narrowband hypothesis.

2.3. Problem formulation
Let us move on the problem formulation which will show that
the LOST algorithm does not exploit the TDoA.

LOST exploits the structure of the space-time observa-
tion covariance matrix Ry = E

[
y(t)yH(t)

]
with E[·] is the

mathematical expectation. Thus, the signal subspace of rank
R =

∑Q
q=1Kq is spanned by the vectors v(pq, fqk,ρq). The

parameters (pq, fqk,ρq) for 1 ≤ q ≤ Q and 1 ≤ k ≤ Kq can
then be estimated with a MUSIC approach by searching the
zeros of:

JMUSIC(p, f,ρ) =
vH(p, f,ρ)Π⊥v(p, f,ρ)

vH(p, f,ρ)v(p, f,ρ)
(11)

where Π⊥ is the projector onto the noise subspace from Ry .
However, the optimization of the cost function JMUSIC(p, f,ρ)
can be simplified by reducing the number of interest parame-
ters to the location vector p. Indeed, according to Eqs.(8-10),
the steering vector can be rewritten as:

v(p, f,ρ) = W(p)β(f,p,ρ) (12)

where

{
W (p) = (IK ⊗U (p))

β (f,p,ρ) = c (f)⊗ (Λ (p, f)ρ)
(13)

where IK is the identity matrix of dimension K. In LOST,
the steering vector v(p, f,ρ) in Eq.(11) is thus replaced by
W(p)β(f,p,ρ) and, for each p, the criterion JMUSIC(p, f,ρ)
is minimized with respect to β(f,p,ρ). Thanks to the
Rayleight’s quotient [9], [10], we define the LOST criterion:

JLOST (p) = λmin

{
Q−1

2 (p)Q1(p)
}

(14)

where

{
Q1(p) = WH(p)Π⊥W(p)

Q2(p) = WH(p)W(p)
(15)

where λmin {A} is the minimum eigenvalue of A. In LOST,
the sources location pq for 1 ≤ q ≤ Q can then be estimated
by searching the Q zeros of JLOST (p). The advantage is that
the LOST criterion only depends on p. However, LOST is
based on the separation of W (p) and the vector β(f,p,ρ)
which depends on the sources TDoAs according to Eqs.(6),
(10) and (13). That is why the LOST algorithm cannot ex-
ploit the stations TDoAs. In addition, as the q-th source is
associated to Kq frequencies fqk (cf. Eq.(2)), a source of lo-
cation pq is associated to Kq steering vectors v(pq, fqk,ρq)
and only one matrix W(pq). This last remark shows that the
frequency diversity of the sources is not optimally exploited
in LOST (cf. Eq.(14)). The purpose of this paper is to exploit
the structure of the vectors β (fqk,pq,ρq) for 1 ≤ k ≤ Kq

to take into account the TDoA and the spectrum diversity of
sources for the estimation of the location pq .

3. NEW SPACE-TIME GEOLOCATION
ESTIMATION

The aim of this approach is to propose a spectrum adaptive
algorithm which explicitly and simultaneously uses the link
between the TDoA, AoA and the sources coordinates of the
spatio-temporal process. This strategy will be incorporated in
a relaxed optimization algorithm.
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3.1. Estimation of the source frequencies from its location
We first desire to estimate the frequencies set Fq of the q-th
source from its known location pq . According to Eqs.(11),
(14) and (15), the eigenvector vmin associated to the mini-
mum eigenvalue of Q−12 (pq)Q1(pq) verifies:

JMUSIC(pq, f ∈ Fq,ρq) =
vHminQ1(pq)vmin

vHminQ2(pq)vmin
(16)

where Fq = {fqk : 1 ≤ k ≤ Kq}.
It is known that, assuming that pq is the true source

location and if ρq is the true complex source attenuation,
JMUSIC(pq, f ∈ Fq,ρq) is null. As a consequence,
Q−12 (pq)Q1(pq) has Kq null eigenvalues with the associ-
ated eigenvectors:

vmin(j) =

Kq∑
k=1

ξkjβ(fqk,pq,ρq) for 1 ≤ j ≤ Kq (17)

with ξkj is one coefficient of a change of basis matrix.
However, fqk and ρq are unknown. Thus, a cost function

independent of ρ is preferred. Hence, we write the vector
β(f,pq,ρ) as, using Eqs.(9) and (13):

β(f,pq,ρ) = ΛK(pq, f)ρ (18)

ΛK(pq, f) = c(f)⊗Λ(pq, f) (19)

Then, the frequencies fqk can be estimated by a MUSIC ap-
proach. Indeed, the Kq vectors β(f,pq,ρ) are orthogonal to
the following projector onto the noise subspace:

Π⊥v = IKL −
Kq∑
j=1

vmin(j)v
H
min(j) (20)

Consequently, from [9], [10] and Eq.(19), the fqk for 1 ≤
k ≤ Kq can be estimated by searching the zeros of the fol-
lowing criterion:

JFq (f) = λmin

{
A−1

2 (f)A1(f)
}

(21)

where

{
A1(f) = ΛH

K(pq, f)Π
⊥
v ΛK(pq, f)

A2(f) = ΛH
K(pq, f)ΛK(pq, f)

(22)

From the knowledge of the estimated fqk’s and the loca-
tion vector pq , the vector ρq can finally be estimated from the
vectors vmin(j) of Eq.(17). Indeed, the vector vmin(j) can
be expressed as:

vmin(j) = Vq (ξmin(j)⊗ ρq) (23)

where Vq =
[
ΛK(pq, fq1), ...,ΛK(pq, fqKq )

]
and ξmin(j) =

[ξ1j , ..., ξKqj ]
T . We define ηj = ξmin(j)⊗ρq and is deduced

from the least squares:

ηj =
(
VH
q Vq

)−1

VH
q vmin(j) (24)

The ηj components being reshaped into a Kq × L matrix
Ωj = ξmin(j)ρTq , one could deduce the vector ρq from:

Ω =

Kq∑
j=1

ΩT
j Ω∗j = ρqρ

H
q

Kq∑
j=1

ξHmin(j)ξmin(j)

 (25)

where (·)∗ is the conjugate operator. Indeed, ρq is its eigen-
vector of Ω associated to the maximum eigenvalue.

3.2. Direct geolocalization from the frequencies set
After the estimation of the frequencies set of the q-th source,
one could directly geolocalise it using this information.

The q-th source subspace is spanned by the vectors
v(p, fqk,ρq) for (1 ≤ k ≤ Kq). Using Eqs.(12) and (13):

v(p, fqk,ρq) = B(p, fqk)ρq (26)

B(p, fqk) = W(p) (c(fqk)⊗Λ(p, fqk)) (27)

The location pq of the source is estimated with a Weighting
Subspace Fitting (WSF) approach [11] by searching the zeros
of the following criterion:

JFIND,q(p) = trace
(
Π⊥Πq(p)

)
(28)

Πq(p) = Eq(p)
(
EH
q (p)Eq(p)

)−1

EH
q (p) (29)

with Eq(p) =
[
v(p, fq1,ρq), ...,v(p, fqKq

,ρq)
]
.

From Eqs.(26) and (27), it can be shown that vH(p, f1,ρq)

×v(p, f2,ρq) = 0 for f2 − f1 = kFe

K , k ∈ Z \ {0}, and
||v(p, f,ρq)||22 = KM . Hence, in presence of frequencies
such that fqi−fqj = kFe

K , the LOST-FIND criterion becomes:

JFIND1,q(p) =

K∑
k=1

vH(p, fqk,ρq)Π
⊥v(p, fqk,ρq)

KM
(30)

If ρq is unknown or has not been estimated, we inject
Eq.(26) in Eq.(30) and the vector ρq can be jointly estimated
to pq . Indeed, the location pq is deduced from:

JFIND2,q(p) = min
ρ∈CL

JFIND1,q(p,ρ) = λmin {Q(p)} (31)

Q(p) =

K∑
k=1

BH(p, fqk)Π
⊥B(p, fqk)

KM
(32)

When the assumption fqi − fqj = kFe

K is not veri-
fied, JFIND1,q(p) 6= JFIND,q(p) but JFIND1,q(pq) =
JFIND,q(pq) = 0. In this case, the source location can be
estimated with JFIND1,q(p). In addition, this estimator is
not the optimal one (in the sense that it does not exploit all
the available information) which is JFIND,q(p).

3.3. LOST-FIND algorithm
The steps of the LOST-FIND algorithm are then:

• Step-1: First estimation of pq for (1 ≤ q ≤ Q) with
LOST algorithm for each q from Eq.(14),

• Step-2: Frequencies estimation Fq = {fqk : 1 ≤ k ≤
Kq} from searching the zeros of JFq

(f) in Eq.(21),

• Step-3: From Fq , pq and Ω (Eq.(25)), estimation of
the attenuation vector ρq: eigenvector associated to the
maximum eigenvalue of Ω,

• Step-4: From the knowledge of Fq and ρq , new esti-
mation of pq with the criterion JFIND,q(p) (Eq.(28))
or JFIND1,q(p) (Eq.(30)),

• Step-5 (optional): Go to Step-2.
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4. SIMULATIONS

In this part we compare the LOST-FIND algorithm to the
LOST, the DPD, the classical triangulation (AoA/AoA) and
the localization in 2-step combining the AoA of one station
and the TDoA with 1 sensor of each station (AoA/TDoA).
We will consider two arrays. In a Cartesian coordinate sys-
tem, we place the first array at (-400m,0), and the second at
(+400m,0). The arrays are composed of six sensors where
five are in a circular formation around a sixth in the center.
The arrays radius is 0.8m and we consider K = 4 tempo-
ral shifts for the space-time process (LOST and LOST-FIND)
and K = 4 decompositions of the stations bandwidth for the
DPD.

We first consider the single source case, where the source
is located at (0,+5m). Such a scenario is very severe for al-
gorithms which exploits only the AoA, where their perfor-
mances are strongly deteriorated. This source is composed
of 4 subcarrier frequencies fairly distributed in each subband
of the DPD decomposition. Indeed, to correctly operate, the
DPD needs a signal presence in all the subbands. In Fig.1, we
plot the RMSE of the estimated source position as a function
of the bandwidth of the arrays with SNR= 10dB. We observe
that, for the two algorithms which do not exploit the TDoA
(e.g. LOST and AoA/AoA), the arrays bandwidth has no im-
pact on the performance. Furthermore, for the methods which
exploit the TDoA, we note that the higher the bandwidth is,
the smaller the RMSE are. In addition, the performance is
similar between the DPD and the AoA/TDoA because, with
a single source, when the signal is narrowband after the DPD
decomposition, it was shown that the performance is similar
[12]. Finally, exploiting the space-time structure, the LOST-
FIND gives a better RMSE. In the remainder of this part we
fix the arrays bandwidth at B = 500kHz.

Fig. 1. Visualization of the RMSE as a function of the bandwidth
of the arrays

In Fig.2 we keep the same source position, but consider-
ing now a source composed of 3 subcarrier frequencies, and
we plot the RMSE of the source position as a function of the
SNR. We observe that the algorithms exploiting the TDoA
have a better performance. The DPD has poorer performance
than in Fig.1 because the source signal is not present in
each decomposition subband. Moreover, we constate that the

LOST-FIND is the algorithm having the better performance.

Fig. 2. One source at position (0,+5m)

In Fig.3 we consider the two sources case. We place the
sources locations in a more favorable context for the AoA es-
timation. We place the first source at (0,+200m) and the sec-
ond at (+5m,+200m) and we have 3 (resp. 2) subcarrier fre-
quencies for the first (resp. second) source. We first observe
that the AoA/TDoA gives bad results as, the two sources be-
ing really too close, the temporal resolution of the criterion
does not allow to separate the two sources. Although, due
to the total exploitation of the system information (AoA of
the two arrays and their TDoA simultaneously), the DPD is
not optimal in this context, it gives better performance than
the AoA/AoA methods. Thanks to the identification of the
frequencies of each source, the LOST-FIND algorithm per-
mits to reject the source we do not want to locate (the second
source). Consequently, it allows to have better performance
than the other algorithms. Finally, we apply the optional iter-
ation given by the step-5 of LOST-FIND and we remark that
the performance is better.

Fig. 3. Two sources of positions (0,+200m), (+5m,+200m), estima-
tion of the first source

5. CONCLUSIONS
A new algorithm LOST-FIND was proposed for blind geolo-
calization. This algorithm is spectrum adaptive and simul-
taneously exploits the TDoA and AoA. Indeed, the spatio-
temporal structure of the model is more correctly handled
than the recently introduced LOST algorithm. Moreover, this
property gives a good robustness when DPD and/or LOST
fail. The proposed algorithm outperforms the existing ones as
shown in the simulations.
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ray Processing Using the Mode Algorithm, Circuits, Sys-
temes, Signal Processing, vol.14, #1, p.17-38, 1995.

[6] E. Weinstein, Decentralization of the Gaussian Maximum
Likelihood Estimator and Its Applications to Passive Ar-
ray Processing, IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. ASSP-29, p.945-951, 1981.

[7] A. Amar & A. J. Weiss, Direct Position Determination of
Multiple Radio Signals, IEEE ICASSP 2004-Montreal,
vol.2, p.81-4.
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