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ABSTRACT

The use of distances based on optimal transportation has re-
cently shown promise for discrimination of power spectra. In
particular, spectral estimation methods based on `1 regular-
ization as well as covariance based methods can be shown to
be robust with respect to such distances. These transportation
distances provide a geometric framework where geodesics
corresponds to smooth transition of spectral mass, and have
been useful for tracking.

In this paper we investigate the use of these distances for
automatic target recognition. We study the use of the Monge-
Kantorovich distance compared to the standard `2 distance for
classifying civilian vehicles based on SAR images. We use a
version of the Monge-Kantorovich distance that applies also
for the case where the spectra may have different total mass,
and we formulate the optimization problem as a minimum
flow problem that can be computed using efficient algorithms.

Index Terms— Optimal transport, Automatic target
recognition, SAR, Power spectra.

1. INTRODUCTION

In our information society there is an ever increasing stream
of images, and automatic processing is a key to analyze and
utilize this information efficiently. It is therefore essential
to quantify differences and similarities in images in a math-
ematically sound way. Estimation methods for radar and
sonar imaging are often based on statistical quantities, and it
is therefore natural to demand that a “small’ change in the
spectral content results in a small change in relevant statisti-
cal quantities. This is not the case for many standard metrics
where a small shift in the frequency of a spectral line results
in a significant change in, e.g., the `1 or the `2 norm of the
spectral difference.
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In this paper we focus on the Monge-Kantorovich dis-
tance [1], also known as the earth movers distance in the com-
puter science community; a distance which is rooted in opti-
mal transport and which has shown promise for both tracking
and classification [2, 3, 4, 5, 6, 7] and is a distance that is ro-
bust with respect to measurement error [8, 9]. In particular,
for data-direct high resolution spectral estimation methods
such as sparse methods based on `1-regularization [10, 11]
the magnitude of the true solution can be robustly recovered
if the error is quantified using the Monge-Kantorovich dis-
tance and the support of the true signal is sparse and with sep-
arated components [9]. For these problems, the so-called dic-
tionary is by necessity highly coherent and no useful bounds
can be obtained in terms of the `p norms [12]. The Monge-
Kantorovic distance, does not just compare images point by
point, but instead penalizes the total transport of mass. Also
for covariance based methods, distances such as the Monge-
Kantorovic distance have been shown to be robust with re-
spect to measurement error and robustness bounds are com-
putable [13].

In this paper we consider automatic target recognition
(ATR) of vehicles, where the goal is to analyze a SAR image
of a parking lot and determine if a given car in the parking
lot is a sedan, a sports utility vehicle (SUV), or a van. We
compare the recognition rate using the Monge-Kantorovic
distance to the recognition rate obtained using the classical
`2 distance. Section 2 gives a background where the trans-
portation distance is defined. In Section 3 we reformulate
the optimization problem of computing the transportation
distance as a minimum cost flow problem. In Section 4 the
automatic recognition problem is presented and we describe
the classification procedure. Finally, the results are presented
in Section 5, and Section 6 contains concluding remarks.

2. BACKGROUND

The Monge-Kantorovich distance represents the minimal
transportation cost of moving one “mass” distribution to an-
other with specified cost of moving one unit amount of mass
from one location to another [1].

Consider two K-dimensional element-wise non-negative
vectors f0 and f1 that each represent a distribution of “mass”
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at the locations x ∈ Ω. Let m(x0, x1) denote the amount
of mass transported from location x0 to location x1, and we
say that M = (m(x0, x1))x0,x1∈Ω ∈ RK×K is a feasible
transportation plan from f0 to f1 if the respective marginals
are equal to f0 and f1, i.e., if M is in the set

Π(f0, f1) :=
{
M = (m(x0, x1))x0,x1

: m(x0, x1) ≥ 0,∑
x1∈Ω

m(x0, x1) = f0(x0), x0 ∈ Ω

∑
x0∈Ω

m(x0, x1) = f1(x1), x1 ∈ Ω
}
.

Let c(x0, x1) represent the cost of transferring one unit of
mass from location x0 ∈ Ω to location x1 ∈ Ω, and define the
matrix of transportation costs by C := [c(x0, x1)]x0,x1∈Ω ∈
RK×K . Then the minimum cost of transporting mass with
distribution f0 to a distribution f1 is

Tc(f0, f1) = min
M∈Π(f0,f1)

∑
x0,x1∈Ω

m(x0, x1)c(x0, x1). (1)

This is known as the Monge-Kantorovich distance [14].
Monge-Kantorovich distances are not metrics in general, but
they readily give rise to a class of the so-called Wasserstein
metrics:

Wp,d(f0, f1) = Tc(f0, f1)min(1, 1p )

where the cost function is of the form c(x0, x1) = d(x0, x1)p,
and where d is a metric on Ω and p ∈ (0,∞) [1].

The Monge-Kantorovich theory deals with mass distribu-
tions of equal mass. However, they can be generalized to dis-
tances for distributions of possibly unequal masses as follows
[8]. Given the two mass distributions f0 and f1, we postulate
that these are perturbations of two other mass distributions
g0, g1 ∈ RK , that have equal mass. Then, the cost of trans-
porting f0 and f1 to one another can be thought of as the cost
of transporting g0 and g1 to one another plus the size of the
respective perturbations:

T̃c,κ(f0, f1) := inf
‖g0‖1=‖g1‖1

T (g0, g1) + κ

1∑
j=0

‖fj − gj‖1. (2)

These distances have several interesting properties. They
are weak∗ continuous hence may be used to localize spectral
mass [1, 13]. They are contractive with respect to additive and
normalized multiplicative noise, reflecting the fact that noise
impedes the ability to discriminate. [8]. Furthermore, they
have additional properties relating to deformations of spectra
and smoothness with respect to translation. More specifically
geodesics (e.g., the Wasserstein-2 metric) preserve “lumpi-
ness.” A consequence of this is that when linking power spec-
tra via geodesics of the metric, the corresponding peaks often
seem to be “matched” and the power between those transfer in
a consistent manner. Such a property appears highly desirable

in morphing for, e.g., tracking of frequencies in a slowly time-
varying signal and integrating data from a variety of sources
(see, e.g., [15, 16, 5]). See also [17] for a matrix valued ex-
tension.

3. COMPUTATION OF THE
MONGE-KANTOROVICH DISTANCE

The computation of the Monge-Kantorovich distance is a lin-
ear optimization problem and can in principle be computed
using any standard convex optimization software. We can
write the Monge-Kantorovich distance (2) as:

T̃c,κ(f0, f1) = min
M,g0,g1

Tr(MTC) + κ

1∑
i=0

‖fi − gi‖1(3a)

subject to M 1K = g0 (3b)
MT1K = g1 (3c)
M ≥e 0 (3d)

where M ∈ RK×K is a matrix that represents the transporta-
tion plan from g0 to g1, and C = [c(xi, xj)]xi,xj∈Ω ∈ RK×K
is the cost matrix that contains the costs of moving a unit of
mass from one point to another. Here ≥e denotes element-
wise inequality and 1K is the K × 1 vector of ones.

One challenge here is the computational burden of com-
puting the distances for large K. However, it is well known
that the optimal transport problem can be posed as a minimal
cost flow problem (see, e.g., [18]). We will here show that this
approach may be modified to include the optimization prob-
lem (2), hence allowing for the use of efficient specialized
network algorithms for fast computations [19].

3.1. Monge-Kantorovich Distance as a Network Simplex
Problem

In this section we will describe how the Monge-Kantorovich
distance (2) can be formulated as a minimum cost flow prob-
lem. Finding the minimum-cost flow consists of determining
the cheapest way to transport a given supply to a given de-
mand through a graph, and such problems can be solved effi-
ciently.

More specifically, a minimum-cost flow problem is for-
mulated as follows. Let G = (V,E) be a directed graph with
a cost ĉ(u, v) associated with each edge (u, v) ∈ E. Then
associate each node v ∈ V with a number d(v) ∈ R cor-
responding to the supply of that node if d(v) > 0 and the
demand of that node if d(v) < 0. The problem is then to
find the flow, ϕ : E → R≥0, that matches the supply to the
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demand with minimal total cost:

minimize
ϕ

∑
(u,v)∈E

ĉ(u, v)ϕ(u, v) (4a)

subject to∑
(v,u)∈E

ϕ(v, u)−
∑

(u,v)∈E

ϕ(u, v) = d(v) for v ∈ V, (4b)

ϕ(u, v) ≥ 0 for (u, v) ∈ E. (4c)

Next, we will formulate (3) as a minimum cost flow prob-
lem. Let each of the two sets F0 = {ui : i = 1, . . . ,K}
and F1 = {vi : i = 1, . . . ,K} correspond to the set of sam-
ple point of xi ∈ Ω, and let d(vi) = f0(xi) and d(ui) =
−f1(xi), for 1 ≤ i ≤ K, be the corresponding supply or de-
mand. Let G0 = (V0, E0) be the complete bipartite di-graph
with bipartition F0 and F1. The cost of the edge connect-
ing ui ∈ F0 to vj ∈ F1 is assigned as ĉ(vi, uj) = c(xi, xj)
in (3), i.e. the distance between xi and xj . The minimum
cost flow problem (4) corresponding to G0 with costs ĉ and
demand/supply rates d corresponds to the standard transporta-
tion problem (1).

In order to allow for mass perturbations (2) we will add an
extra node. To this end, let G = (V,E) where V = V0 ∪ w,
and let w be connected to every other node in V0, i.e, E =
E0 ∪ {(w, v) ∪ (v, w), v ∈ V0}. Further, let the cost of the
edges be ĉ(w, v) = ĉ(v, w) = κ for v ∈ V0, and let the
demand of w be

d(w) = ‖f1‖1 − ‖f0‖1.

By introducing this demand the total demand and supply add
up to zeros also when f0 and f1 has different total mass.

One can easily see that the minimum cost flow of G will
equal to the transportation cost Tκ,c(f0, f1). In this setting,
the functions g0 and g1 in (3) correspond to the supply and
demand resulting from the flow in G0, and ‖gi − fi‖1 corre-
spond to the flow between w and Vi.

Solving the min-cost flow in a graph has been well studied
previously starting with the early work of D. R. Fulkerson in
1961 [20]. A polynomial time network simplex algorithm for
minimum cost flow problems has been given in [19]. Table 1
shows the time advantage of using this method compared to
directly solving (3) using a general purpose convex optimiza-
tion tool like CVX.

Table 1. Time to compute Wκ,c of two images using the two
algorithms (in seconds).

29 × 24 pixels 58 × 48 pixels
κ = 1 κ = 16 κ = 32 κ = 1 κ = 16 κ = 32

CVX 47.53 47.79 47.62 698.6 802.5 817.8
CPLEX 0.018 0.040 0.062 0.244 0.631 0.927

3.2. Role of κ

The Monge-Kantorovich distance contains a free parameter
κ that specifies the penalty of adding and removing a unit of
mass to the spectra. In the reformulation of T̃c,κ as the min-
cost flow problem, the flow of the optimal solution in any edge
with cost greater than 2κ is going to be 0. To see this, assume
that (û, v̂) ∈ E is an edge with c(û, v̂) > 2κ and ϕ(û, v̂) > 0.
Then the flow ϕ̂ given by

ϕ̂(u, v) = ϕ(u, v) for all u ∈ F0\{û}, v ∈ F1\{v̂}
ϕ̂(û, w) = ϕ(û, w) + ϕ(û, v̂)

ϕ̂(w, v̂) = ϕ(w, v̂) + ϕ(û, v̂)

ϕ̂(û, v̂) = 0

is feasible and with lower cost:∑
(u,v)∈E

ĉ(u, v)ϕ(u, v)−
∑

(u,v)∈E

ĉ(u, v)ϕ̂(u, v)

= ϕ(û, v̂)(ĉ(û, v̂)− 2κ) > 0.

This contradicts that ϕ is the minimum cost flow hence the
support of ϕ may be restricted to the edges of cost less or
equal to 2κ.

This observation significantly reduces the number of
edges in the graph and hence reduces the computations
required for calculating the Monge-Kantorovich distance.
The computational time of the network simplex algorithm is
O(K2N2 log(K)) where K is the number of nodes in the
graph and N is the number of edges [19]. Therefore, if the
use of κ reduces the number of edges with a factor p, the
computation time will be reduced by a factor of p2.

4. AUTOMATIC TARGET RECOGNITION

We consider the problem of automatic target recognition of
civilian vehicles and the goal is to analyze a SAR image of a
parking lot and determine if a given car in the parking lot is
a sedan, a SUV or a van. This recognition problem is solved
by first identifying the vehicles and then using a classification
method to determine which class the car belongs to. We com-
pute the results both using the Monge-Kantorovich distance
and the `2 distance as distance for the classification method
in order to compare recognition rates.

4.1. The data set

We use the Gotcha 2008 [21] data set where SAR images are
taken by an airborne radar from a circular flight pattern1. SAR
imaging comes down to a 2D spectral estimation problem [22]
and gives an image of reflections for a given look angle. These
are solved using sparse imaging methods [11] and then fused

1We use the GOTCHA volumetric SAR data in this example from the U.S.
Air force Sensor Data Management System. This data is publicly available
by request.
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together using standard SAR imaging techniques. This results
in a data set containing images of 535 cars parked in a parking
lot, 231 images of Sedans, 182 SUVs, 122 Vans. For the sake
of an equal group size, 120 images are picked from each car
type.

Fig. 1. SAR images of three different car classes. Sedan (left),
SUV (center) and van (right).

As a preprocessing step, the cars in the image are rotated
so that they are aligned and cropped such that each image
contains only the car image. The pose estimation method is
described in [23]. To speed up the computation of the Monge-
Kantorovich distance, images are scaled down to 58× 48 and
29 × 24 pixels. The rescaling uses a bicubic interpolation
where each pixel is replaced by a weighted average of pixels
in the nearest 4×4 neighborhood. This also allows us to study
the robustness against image resolution.

Fig. 2. SAR images of three different car classes after pose
correction/scaling. Sedan (left), SUV (center) and van (right).

4.2. Methodology

Next, the Monge-Kantorovich2 and the `2 distances are com-
puted for all pairs of images. To solve the min-cost flow for
the constructed graph in section 3.1 we used TOMLAB CPLEX
[24]. The solver is generally considered the state-of-the-art
large scale mixed integer linear and quadratic programming
solver.

For the classification, a training set is selected at random
consisting of one third of the images from each group. The
rest of the images are used as test data. The test images are
then classified using the nearest neighbour method, where
each test image is associated with the class corresponding to
the class of closest training image. The error rate is then com-
puted as the number of mislabeled cars divided by the total
number of cars. This process is repeated 1000 times and the
average error rates are depicted in Fig. 3.

2The Euclidean distance c(x, y) = ‖x − y‖2, where x, y ∈ Ω, is used
as underlying distance.
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Fig. 3. The upper graph shows the error rate for 58× 48 pixel
images using the Wasserstein distance with different values
of κ as well as the error rate using `2 as the distance. The
lower graph shows the same results for 29 × 24 image size.
Confidence intervals of level 90% are shown in dashed lines.

5. RESULTS

From the error rates in Fig. 3 it is seen that the recogni-
tion rates are considerably higher when using the Monge-
Kantorovich distance compared to the `2 distance provided
that κ is chosen appropriately. Also as long as κ is in a
reasonable range, the recognition rate is not considerably
sensitive to its value and hence it can be considered as a
semi-parametric method.

From Fig. 3 it can be seen that the optimal recovery rate
for the Monge-Kantorovich based recognition is the same
for the two image granularity levels (for correctly selected
κ). This suggests that this distance is relatively insensitive
to rescaling/smoothing of the image. Also note that when
the image size is reduced, then the error rate for the `2 norm
is dropped by a considerable amount. The down-sampling
method takes an average of the neighbouring pixels and use
it as the new pixel value hence acts as smoothing. So when
the `2 norm is computed for the smaller image size, it is less
sensitive to the pixel by pixel error and more sensitive to the
the total spectral energy in a region.

6. CONCLUSIONS

In this paper we consider the optimal transport distance and
its application for automatic target recognition. The results
show that the error rate can be considerably lower when using
the Monge-Kantorovich distance compared to the standard `2
distance as underlying distance. We also present a fast way to
compute the Monge-Kantorovich distance using the network
simplex algorithm that applies also for spectra with different
total mass.
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