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ABSTRACT
Mapping environmental noise with high resolution on a large
scale (such as a city) is prohibitively expensive with current
approaches, which use a large, dense array spanning the entire
region of interest, or sequential noise measurements at thou-
sands of locations on a dense grid. We propose instead a new
acoustic measurement scheme using a small movable array
(for example, mounted on a vehicle driving along the streets
of a city) to rapidly acquire measurements at many differ-
ent locations. A multiple-point sparse constrained deconvo-
lution approach for the mapping of acoustic sources (MPSC-
DAMAS) and a multiple-point covariance matrix fitting (MP-
CMF) approach are developed to accurately estimate the lo-
cations and powers of stationary noise sources across the re-
gion of interest. Computer simulations of large region acous-
tic mapping demonstrate that superior resolution and much
lower power estimation errors are achieved by the proposed
approaches compared to the state-of-the-art SC-DAMAS ap-
proach and CMF approach.

Index Terms— microphone arrays, source localization,
acoustic source mapping

1. INTRODUCTION

Mapping of acoustic sources using microphone arrays have
been widely used for acoustic source localization and power
estimation in aeroacoustic measurements [1], vehicle noise
mapping and vibration detection since the mid 1990s [2]. Mi-
crophone arrays are used to virtually steer into the desired
scanning points and estimate the sound pressure level (SPL)
at those points to identify the dominant noise sources. The
state-of-the-art power estimation approaches are the delay-
and-sum (DAS) beamformer, the deconvolution approach for
the mapping of acoustic sources (DAMAS) [3], the sparse
constrained deconvolution (SC-DAMAS) [4], and the covari-
ance matrix fitting (CMF) [4, 5]. The DAS beamformer is
the simplest approach, but it suffers from high sidelobes and
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spatial aliasing effects. The DAMAS approach achieves su-
per resolutions, but the convergence constraint of the Gauss-
Seidel method [4] in the DAMAS approach cannot be often
satisfied. The SC-DAMAS and CMF approaches successfully
solve the convergence problem of the DAMAS approach, but
they are constrained to the physical regions within the aper-
ture of microphone arrays.

A recent large-scale study in Europe has discovered sig-
nificant adverse impact of environmental noise on health and
longetivity. Locating environmental noise sources and mea-
suring their level on a city- or even nation-scale is essential
to address this problem, yet deploying dense acoustic arrays
on this scale would be prohibitively expensive. To rapidly
and cost-effectively address this need, we propose to mount a
small microphone array on a vehicle which can conveniently
drive around on public streets and acquire data at many
locations across the region of interest, creating a kind of non-
coherent virtual array of much larger aperture. We propose a
multiple-point SC-DAMAS (MPSC-DAMAS) approach and
a multiple-point CMF (MP-CMF) approach for accurately
mapping the location and intensity of stationary acoustic
noise sources across the region from such data. Compared
to the existing SC-DAMAS and CMF approaches studied in
[4], our proposed approaches have modest increases in the
computational complexity, but are found to provide superior
performance.

2. PROBLEM FORMULATION

Consider a wave field divided into a dense grid of I ”scan-
ning” locations at which the noise source power is to be esti-
mated. The number of monopole acoustic sources located in
the field are assumed to be sparse and less than I . A mov-
able microphone array of M microphones is used to record
data at a total of K recording points. Notice that the current
acoustic mapping approaches use a fixed microphone array
and have only one recording point. We present the acous-
tic mapping problem based on a multiple-point data measure-
ment scheme. The Cartesian coordinates of the I scanning
points pi = [pix, piy, piz]

T and the microphone positions at
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kth recording points p
(k)
m = [p

(k)
mx, p

(k)
my, p

(k)
mz]T are known.

The total snapshots of each microphone at each recording
point are divided into N segments, where each segment con-
sists of length-L snapshots. Applying an L-point fast Fourier
transform (FFT), the array output vector of anM -element mi-
crophone array in the presence of additive noise at the kth
recording point can be represented as,

z(k)n (fl) = A(k)(p, fl)sn(fl)+v(k)
n (fl), n = 1, 2, ..., N (1)

where fl ∈ [fmin, fmax] denotes the lth frequency bin;
A(k)(p, fl) is the M × I steering matrix over all the scan-
ning points at the kth recording point and it is defined as
A(k)(p, fl) = [a(k)(p1, fl), ...,a

(k)(pI , fl)]. The source
signal vector of the whole scanning region is given by
sn(fl) = [sn,1(fl), ..., sn,I(fl)], n = 1, 2, ..., N . It is as-
sumed that the source signal vector sn(fl) is zero mean and
uncorrelated with the additive noise vector v

(k)
n (fl). The

steering vector for scanning point i and recording point k is

a(k)(pi, fl) =
[ 1

r
(k)
i,1

e−j2πflr
(k)
i,1 /cfL , ...,

1

r
(k)
i,M

e−j2πflr
(k)
i,M/cfL

]T
(2)

where r(k)i,m represents the propagating distance from the ith
scanning point to the mth microphone at the recording point
k. The problem is to estimate the power levels of the scanning
points using the observed vectors z(k)n (fl), k = 1, 2, ...,K.

The existing approaches assume that the scanning region
is as large as the physical array size and the observation is
made at one recording point where K = 1. The power esti-
mation of the DAS beamformer for the scanning point pi and
the frequency bin fl is given as

y(1)(pi, fl) =
1

M2
ã(1)(pi, fl)

HR(1)(fl)ã
(1)(pi, fl), (3)

where

ã(1)(pi, fl) =
[
r
(1)
i,1 e
−j2πflr(1)i,1/cfL , ..., r

(1)
i,1 e
−j2πflr(1)i,M/cfL

]T
,

(4)
and the covariance matrix R(1)(fl) at the recording point 1 is
modeled by

R(1)(fl) = E[z(1)n (fl)z
(1)
n (fl)

H ]

= A(p, fl)X(fl)A(p, fl)
H + σ2(fl)I (5)

where the recording point index (1) is omitted in A(p, fl)
and σ2(fl) for the sake of representation; the matrix X(fl) is
the covariance matrix of the sources. Using (5) and assuming
that the sources are stationary and mutually uncorrelated, and
that the noise is absent, the DAMAS approach [3] formulates
the following linear system of equations

y(1)(fl) = C(1)(fl)x(fl) (6)

where x(fl) = [x1(fl), ..., xI(fl)]
T and xi(fl) represents the

averaging power at the frequency fl and the scanning point i,

with i = 1, 2, ..., I; y(1)(fl) = [y
(1)
1 (fl), ..., y

(1)
I (fl)]

T is the
DAS output power vector; and the I × I matrix C(1) has the
elements

c
(1)
i,j (fl) =

1

M2
|ã(1)(pi, fl)Ha(1)(pj , fl)|2, i, j = 1, 2, ..., I

(7)
Estimating the power vector x(fl) in (6) is an inverse prob-
lem. If the square matrix C(1)(fl) is full rank and invert-
ible, the problem can be directly solved. However, the matrix
C(1)(fl) often has a very low rank and is not invertible for
acoustic mapping problems. The DAMAS approach solves
the inverse problem in (6) using the Gauss-Seidel method.
However, the DAMAS approach requires the matrix C(1)(fl)

be diagonally dominant and c
(1)
i,i (fl) = 1. This constraint

is not always true for large region acoustic mapping where
the scanning points have large distance ratios. Therefore, the
DAMAS approach cannot guarantee to converge for solving
the inverse problem in (6).

3. THE PROPOSED MPSC-DAMAS AND MP-CMF

The SC-DAMAS approach [4] solves the inverse problem (6)
by formulating the following sparsity constrained problem:{

minxJ (x) = ||y(1) −C(1)x||2
s.t.‖x‖1 ≤ β, xi ≥ 0, i = 1, 2, ..., I,

(8)

where β is the upper bound of the total source power and ev-
ery element of x is enforced to be nonnegative. For the sake
of representations, the frequency bin index fl is omitted in (8)
and in the following derivations. By the prior knowledge of
the sparsity of x, the SC-DAMAS approach works effectively
for small region acoustic mappings [4]. When the region of
interest increases, the SC-DAMAS approach loses the capa-
bility of correctly identifying the dominant sources without
increasing the array aperture accordingly. To solve this prob-
lem, we propose to use the multiple-point measurements (1)
for k = 1, 2, ...,K. In this case, we stack up all DAS out-
put power vectors y(k), k = 1, 2, ...,K in (6), and yield the
following expanded linear system of equationsy(1)

...
y(K)

 =

C(1)

...
C(K)

x (9)

Denoting y = [y(1), ...,y(K)]T and C = [C(1), ...,C(K)]T ,
a multiple-point SC-DAMAS (MPSC-DAMAS) approach is
then proposed as follows:{

minxJ (x) = ||y −Cx||2
s.t.‖x‖1 ≤ β, xi ≥ 0, i = 1, 2, ..., I,

(10)

where the initialization of β can be made using the eigende-
composition method similarly to the SC-DAMAS approach.
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Fig. 1. Maps of the actual sources, DAS beamformer, SC-DAMAS, CMF, MPSC-DAMAS, and MP-CMF (f = 1kHz,
σ2 = 100).

Compared to the SC-DAMAS approach, the MPSC-DAMAS
approach increases the degree of freedom of the matrix C
using the array measurements from different points. There-
fore, the MPSC-DAMAS approach is expected to estimate the
same number of unknowns in x more accurately. A multiple-
point SC-RDAMAS approach can also be worked out based
on the SC-RDAMAS approach presented in [6] for more ro-
bust estimation with strong additive noises. It will not be fur-
ther discussed here due to the page limit.

Now let’s discuss the CMF approach for estimating the
source powers using the observation data given in (1). As-
suming a single recording point is used, the CMF approach
[4] directly works on the sample covariance matrix and the
steering matrix. Notice from (5) that the covariance matrix
can be decomposed to a linear representation of the source co-
variance matrix. The covariance matrix can be estimated from
the sample covariance matrix, which is an averaged estimate
of the covariance matrix R(1)(fl) using the N segments:

R̂(1) =
1

N

N∑
n=1

z(1)n (z(1)n )H . (11)

For mutually uncorrelated sources, the matrix X is a diagonal
matrix with I unknowns xi, i = 1, 2, ..., I . Using the sparsity
of {xi}Ii , the CMF approach estimates the noise power σ2 and
the diagonal elements {xi}Ii of X as follows:{

min{xi}Ii ,σ2 ||R̂(1) −A(1)(p)XA(1)(p)H − (σ(1))2I||2F
s.t. xi ≥ 0, i = 1, 2, ..., I,

∑I
i=1 xi ≤ β, (σ(1))2 ≥ 0,

(12)
We found that the performance of the CMF approach de-
grades when the region of interest increases. To overcome

this problem, we propose a multiple-point CMF (MP-CMF)
approach using the multiple-point measurements (1) as fol-
lows:{

min{xi}Ii ,σ2 ||R̂−A(p)XA(p)H − σ2I||2F
s.t. xi ≥ 0, i = 1, 2, ..., I,

∑I
i=1 xi ≤ β, σ2 ≥ 0,

(13)

where we compute the matrices R̂ = 1/K
∑K
k=1 R̂

(k)

and A(p)XA(p)H = 1/K
∑K
k=1 A

(k)(p)XA(k)(p)H

as the averages over the K recoding points; and σ2 =
1/K

∑K
k=1(σ

(k))2 is the averaged noise power. The initial-
ization of β and σ2 are made similarly to the CMF approach.

All the above sparse constraint formulations are quadratic
convex optimization problems and can be solved via read-
ily available interior point methods with the free Self-Dual
Minimization software package [7]. The MPSC-DAMAS ap-
proach adds modest computational complexity due to the in-
crease of matrix dimensions and the MP-CMF approach adds
negligible computational complexity for the average compu-
tations.

4. EXPERIMENTAL RESULTS

In this section, the performance of the proposed MPSC-
DAMAS and MP-CMF approaches was evaluated and com-
pared with the existing DAS beamformer, SC-DAMAS and
CMF approaches [4]. In the first simulation, we used an
8-channel circular array with a diameter of 1m. The scan-
ning region of interest was a 15m × 10m plane and the
scanning points were set on a 1m × 1m grid. The received
signals were generated according to Eq. (1) where the mi-
crophone array were placed on the scanning plane. Four
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Fig. 2. Maps of the actual sources, DAS beamformer, SC-DAMAS, CMF, MPSC-DAMAS, and MP-CMF (f = 500Hz,
σ2 = 100).

acoustic sources and six recording points were considered as
shown in Fig 1. The sources and additive noise were syn-
thetic complex Gaussian noise signals with zero mean and
powers of 40dB and 20dB, respectively. The frequency of
interest was set to 1kHz. A total of 10000 snapshots were
used at each recording point. The 4th recording point was
used in the DAS beamformer, SC-DAMAS and CMF for
the better performance. All recording points were used for
MPSC-DAMAS and MP-CMF. The resulting acoustic maps
were shown in Fig 1, where the x-axis and y-axis represent
the 2D scanning plane and the power levels are represented in
a hot color bar with linear values. It is observed that the DAS
beamformer gives the worse resolution and power estimation.
The dominant sources cannot be identified from the results
of the DAS beamformer and the CMF approach. Compared
to SC-DAMAS and CMF, MPSC-DAMAS and MP-CMF
produce much lower estimation errors and better resolutions,
and the dominant sources can be clearly identified from the
maps. Among all the compared approaches, MPSC-DAMAS
produces the best performance for the acoustic mapping.

In the second simulation, the large aperture microphone
directional array (LAMDA) studied in [5] was used. The
scanning region of interest was increased to a 30m × 20m
plane. The number of target sources was increased to eight
and six recording points were selected as illustrated in Fig
2. The source frequency of interest was reduced to 500Hz.
Without loss of generality, all the other settings are same to
the first simulation. Fig 2 shows the acoustic mapping results
of all the approaches. A similar observations was made as
Fig 1. MPSC-DAMAS and MP-CMF clearly identify the 8
dominant sources, while both SC-DAMAS and CMF missed

3 sources and produced several false sources. MP-CMF
has slightly increased power estimation errors and MPSC-
DAMAS has the best performance on the power estimation.

The processing time for both simulations using Matlab
implementations showed MPSC-DAMAS runs 2 times slower
than SC-DAMAS, and runs 3 times slower than CMF and
MP-CMF. Our further tests showed that increasing the num-
ber of recording points generally improves the performance,
but also increases the computational and measurement cost.
Optimal settings of the recording points for a given scanning
region needs to be studied in our future work.

5. CONCLUSIONS

A multiple-point measurement scheme using small movable
arrays for large region acoustic mapping has been shown in
principle and simulation to be feasible. The proposed MPSC-
DAMAS approach and MP-CMF approach both produce ac-
curate source location and source power estimates. Simu-
lation results of large region acoustic mapping showed that
the MPSC-DAMAS and MP-CMF approaches greatly outper-
form the state-of-the-art DAS beamformer, SC-DAMAS and
CMF approaches.
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