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ABSTRACT

We propose a novel algorithm to design an optimum array geometry
for source localization inside an enclosure. We assume a square-law
decay propagation model for the sound acquisition so that the addi-
tive noise on the measured source-microphone distances is propor-
tional to the distances regardless of the noise distribution. We formu-
late the source localization as an instance of the “Generalized Trust
Region Subproblem” (GTRS) whose solution gives the location of
the source. We show that by suitable selection of the microphone
locations, one can tremendously decrease the noise-sensitivity of the
resulting solution. In particular, by minimizing the noise-sensitivity
of the source location in terms of sensor positions, we find the op-
timal noise-robust array geometry for the enclosure. Simulation re-
sults are provided to show the efficiency of the proposed algorithm.

Index Terms – Robust microphone placement, Source localiza-
tion, Generalized Trust Region Subproblem (GTRS).

1. INTRODUCTION

Microphone arrays are widely used to enable high-quality dis-
tant audio acquisition. They are an essential part of a plethora of
sound technologies ranging from source localization and separation
to distant speech recognition [1–3] and from sound field analysis and
monitoring to virtual reality and surveillance [4, 5]. The optimum
microphone array placement is a fundamental design problem that
seeks the best spatial positions of the microphones such that a cer-
tain performance measure in terms of energy or cost efficiency, esti-
mation, detection or identification accuracy is guaranteed. The focus
of this paper is the optimum microphone array geometry for source
localization based on noisy observations of the source-microphone
distances.

The prior art often formulate the sensor placement problem for
linear measurement models and the optimization procedures are de-
rived for a scalar cost related to the mean squared error covariance
matrix. It is also referred to as an optimal experimental design prob-
lem [6] in which a gird of sensors at all locations is hypothesized
and the best subset of M sensors out of G possible locations is se-
lected where M is typically known [7–9]. This formalism leads to
a non-convex Boolean optimization problem which incurs a combi-
natorial search over all the

`
G
M

´
possible combinations. In [10] a

convex relaxation technique is presented for additive Gaussian lin-
ear models and the performance measures are independent of the
unknown parameter. Alternative to the convex optimization, the se-
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lection is achieved based on the coherence of the sensor measure-
ments [11, 12] or solved using greedy algorithms [13] or heuristics.

Non-linear measurement models are frequently encountered in
applications like source localization and tracking. The error co-
variance matrix for non-linear models is not always available in
closed form, and it often depends on the unknown parameter, hence,
alternative approaches or performance measures are considered. A
sensor selection algorithm for observations related to non-linear
models is proposed in [14] within the Bayesian and sequential de-
sign. In [15], sensor selection for target tracking based on extended
Kalman filtering is developed, in which a selection is performed by
designing an appropriate gain matrix for a non-linear measurement
model in additive Gaussian noise; the error covariance matrix is
computed from the past state estimates so the solution is suboptimal.
An alternative sensor selection framework is proposed in [16] where
a sparse selection vector is designed such that a certain Cramér-Rao
bound optimality on the estimates is guaranteed. This framework
enables optimization over the number of microphones as a cardinal-
ity minimization problem such that a specified performance bound
on localization error is obtained. The optimization procedure relies
on the minimum eigen value of the Fisher information matrix and
the optimal source localization can not always be achieved.

In this paper, we consider a minimax approach to design the
microphone array without making any assumptions on the source lo-
cation or statistics of the measurement noise. The main idea is to
find a geometry for the array that gives the minimum estimation er-
ror for the source location when the source location and noise values
are selected adversarily. We use an optimization approach based on
Generalized Trust Region Subproblem (GTRS) to design a function
whose minimum gives the minimax optimal geometry. We show
for the rectangular enclosure, one can find the optimal solution effi-
ciently.

2. PROBLEM STATEMENT

2.1. Signal Model

We consider a simple scenario for source localization in a
rectangular-shaped room with M microphones whose positions are
denoted by xi, i ∈ [M ]. In this paper, we consider a very simple case
where M = 4. The results can be extended to more general cases.
Let s be the location of the source in the room. To find the location of
the source, each microphone estimates its distance from the source
denoted by di, i ∈ [M ]. We suppose di = ‖xi − s‖(1 + ηi) where
ηi is the relative measurement noise. We do not assume any specific
distribution for ηi except that the random variable ηi ∈ [−δi, δi]
where δi ∈ [0, 1) is a fixed given number showing the amount of
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noise in measurements of each microphone.
We briefly explain why this is a good model for the measure-

ments. If we assume the square-law propagation model for the sound
wave, it immediately results that the received signal power in each
microphone is proportional to the inverse-square of its distance from
the source. If we consider an algorithm to estimate the distance from
the input signal, the estimation variance will be proportional to the
squared-distance from the source. Therefore, we model the noisy
distances as di = ‖xi − s‖ + ηi‖xi − s‖, where ηi is a random
variable so the resulting noise model ηi‖xi − s‖ is also a random
variable with a variance proportional to distance.

2.2. Algorithm for Source Localization

To recover the position of the source, we consider the following
quartic cost function:

g(z) =

MX
i=1

(‖z − xi‖2 − d2
i )

2. (1)

The optimal source location is recovered by finding the global min-
ima of the cost function. Adding an auxiliary variable γ and defining
yT = (zT , γ) and the following matrices:

A =

0BBB@
−2xT1 1
−2xT2 1

...
...

−2xTM 1

1CCCA , b =

0B@ d2
1 − ‖x1‖2

...
d2
M − ‖xM‖2

1CA , (2)

the minimization problem can be written as follows

min
y


‖Ay − b‖2 : yTLy = 0

ff
, (3)

whereL = diag (1κ×1,−1) is a diagonal matrix and κ is the dimen-
sion of the ambient Euclidean space containing the microphones.
This is a special instant of a quadratic optimization under a single
quadratic constraint known as “Generalized Trust Region Subprob-
lem” (GTRS) whose global minimum can be efficiently computed.
Specifically, we have the following theorem: Specially, by [17] and
[18], y ∈ Rκ+1 is an optimal solution of (3) if and only if there is a
λ ∈ R such that

(ATA+ λL)y = AT b, yTLy = 0, (4)

ATA+ λL � 0. (5)

This system of equations can be efficiently solved for y and λ which
in particular gives z the optimal position of the source.

2.3. Noisy Measurements and Minimax Design

If there are measurement noises, the di parameters in the vector b
in equation (2) will be the noisy distances, thus the equations (4) and
(5) give an estimate of the source location. The estimation precision
highly depends on the geometry of the microphone array (matrixA),
the real location of the source s and measurement noises ηi. In some
applications, one might have good estimates of the statistics of the
noise or mobility pattern of the source inside the room specially if
the source location is repeatedly estimated during time. In that case,
one might design the sensor array based on these prior information.

In this paper, we consider a minimax approach to design the mi-
crophone array. More precisely, without making any assumptions

on the initial source location or statistics of the noise, we use an
optimization approach based on the equations (1), (4) and (5), to
find the minimax-optimal configuration for the location of the mi-
crophones. The main idea is to find a geometry for the array that
gives the minimum estimation error for the source location when the
source location and noise values are selected in an adversary man-
ner. We design a function whose minimum gives the minimax opti-
mal geometry. Although optimizing this objective function might be
difficult (requiring an exhaustive search) for a general room shape,
in most cases the symmetry of the problem helps to find the optimal
solution efficiently. In this section, we derive the results for a simple
rectangular enclosure. Let us define the following function:

g(z;X, s, η) =

MX
i=1

(‖z − xi‖2 − ‖xi − s‖2(1 + ηi)
2)2, (6)

where X = [x1, . . . , xM ] is a matrix consisting of all microphone
locations, η = [η1, . . . , ηM ] is the set of all noises and s is the real
location of the source. Notice that g(z;X, s, η) is the same func-
tion as equation (1) which should be minimized with respect to z
to find the location of the source where the structure of the function
g and thus the estimation quality of the source location depends on
(X, s, η). Also, as a design parameter we can choose X but (s, η)
might be revealed adversarially as far as s is inside the enclosure and
|ηi| ≤ δi. Defining u = z − s, one can write g as follows

g(u;X, s, η) =

MX
i=1

(‖u‖2 − 2(xi − s)Tu− ‖xi − s‖2t(ηi))2,

(7)

where t(ηi) = 2ηi + η2
i . In practice, |ηi| � 1 and for simplic-

ity one can assume that t(ηi) ≈ 2ηi where ηi ∈ [−δi, δi]. In
order to find the source location, one should find the minimum of
the function g(u;X, s, η) with respect to u with the only difference
that the optimization region is a rectangle centered at −s rather than
0. To simplify the design we assume that the optimization of the
function g(u;X, s, η) is done over all R2. Notice that this is still a
worst-case assumption because, for example, if in the unrestricted
case, the minimum of the function occurs out of the room boundary,
one can always find a better estimate of the source location inside
the room. Let us denote by û(X, s, η) the minimum of the func-
tion g(u;X, s, η) and let us define e(X, s, η) = ‖û‖2 to be the
error (variance) of the estimation. It is immediate to check that if
there is no noise η = 0, the minimum point will be û = 0, i.e.,
e(X, s, 0) = 0 and the source location is exactly identified. For
the minimax design that we consider, we are interested in eopt =
minX maxs,η e(X, s, η) where the maximization over ηi is done
over the range ηi ∈ [−δi, δi] and the outer minimization gives the
minimax-optimal array geometry that we are interested in.

To further analyze the problem, we convert it into an instance of
GTRS problem. Let us define γ = ‖u‖2, yT = (uT , γ) and

A =

0BBB@
−2(x1 − s)T 1
−2(x2 − s)T 1

...
...

−2(xM − s)T 1

1CCCA , b =

0B@ 2η1‖x1 − s‖2
...

2ηM‖xM − s‖2

1CA . (8)

Then, one can formulate finding the optimal û as in equation (3)
where the global minimum is given by equations (4) and (5).

Let us define the center of mass and the covariance of the array
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geometry by

µ =
1

M

MX
i=1

xi, Σ =
1

M

MX
i=1

(xi − µ)(xi − µ)T . (9)

Choosing a coordinate system with axes parallel to the edges of
the room with the origin at the center of the room, from the symmetry
of the problem (room shape and symmetry of η), it results that the
minimax optimal array geometry must be symmetric with respect to
horizontal and vertical axes (in particular, µ = 0). Therefore, there
are two types of configurations that we should consider:

• C1: microphones are located at the vertices of a rectangle
with edges parallel to the walls of the room.

• C2: microphones are on the vertices of a rhombus with diag-
onals parallel to the walls.

Also, after some simplification, equations (4) and (5) for this
case can be written as follows:„

4M(Σ + ssT ) + λIκ 2Ms
2MsT M − λ

«
y = w, yTLy = 0 , (10)

where

w =

„
−4
PM
i=1 ηi‖xi − s‖

2(xi − s)
2
PM
i=1 ηi‖xi − s‖

2

«
and Iκ is the identity matrix of order κwhere κ is the ambient dimen-
sion of the microhoness (We take κ = 2). There are still parameters
(s, η) in these equation. We prove the following proposition which
specifies the worst-case source location in the minimax design.

Proposition 1. Let X̂ be the minimax array configuration, i.e.,
maxs,η e(X̂, s, η) = minX maxs,η e(X̂, s, η). Let (ŝ, η̂) be
the worst source location and noise parameter, i.e., e(X̂, ŝ, η̂) =

maxs,η e(X̂, s, η). Then ŝ must be on the vertices of the rectangu-
lar enclosure.

Proof. We just provide a sketch of the proof. The main idea is that
for both types of configurations C1 and C2, one can increase ‖xi −
s‖2 by moving s closer to the vertices of the enclosure. As the noise
scales proportional to the distance, this is equivalent to increasing
the noise parameter δi which can potentially give a larger value in
the minimax term maxs,η e(X̂, s, η). This implies that the worst
source location must be on the vertices.

Conjecture 1. In the minimax design, the worst case for the noise
parameter η is when ηi is either +δi or −δi.

Proposition 1 and Conjecture 1, completely specify the worst
(s, η) parameter. To find the minimax optimal geometry, one only
needs to do a simple optimization over all symmetric configurations
of type C1 and C2 by simply solving equation (10) for y and λ. No-
tice that the last component of y is a positive number corresponding
to the resulting estimation error ‖u‖2 and the minimax configuration
is the one minimizing this component.

3. EXPERIMENTAL RESULTS

In this section, we conduct some experiments to demonstrate the
proposed theories. The goal is to find the minimax optimal micro-
phone array configuration which minimizes the localization error for
the worst source location and the worst noise distribution. We con-
sider a rectangular enclosure of dimension 6.6×3.6 m2. The number
of microphones is M = 4.

3.1. Robust Microphone Array Configuration

As we explained in Section 2.3, in the minimax design, we as-
sume a worst case scenario for the source mobility inside the en-
closure and the distribution of noise. Based on Proposition 1, the
worst-case source position is when it is located in one of the corners
of the rectangular enclosure which has been depicted by hashed cir-
cles in Fig. 1. To find the minimax-optimal array geometry, we run
a simple (one-dimensional) optimization expressed in (10) over all
symmetric configurations of type C1 and C2.

Fig. 1 illustrates the six configurations (1)–(6) obtained for dif-
ferent noise levels on the source-microphone distances, i.e. δi =
{0.01, 0.02, 0.05, 0.1, 0.2, 0.3} respectively. The resulting position
of microphones for different noise levels are depicted with hexago-
nal shape and with different colors. Notice that between two types of
array configurations (C1 and C2), the optimal one is always of type
C1. The difference between the microphone positions at the green
configurations (1) and (2) (corresponding to δi = 0.01, 0.02) is less
than 5 cm so they are not distinguishable in the picture. One can ob-
serve that as the level of noise increases, the microphones positioned
on rectangles move away from the y-axis towards the corners. The
exact positions are at 15, 36, 63, 114 and 183 cm distance from the
y-axis corresponding to the different values of δi as stated above.

15 

36 114 

63 183 cm 

(1,2) (3) (4) (5) (6) 

source 

Fig. 1: Robust microphone configurations for source local-
ization using four microphones: The numbers show the place-
ment of the microphones (cm) along the x-axis with respect
to the origin located at the room center. The worst-case
source location is at the corners of the enclosure depicted by
hashed circles. The configurations (1)–(6) correspond to δi =
{0.01, 0.02, 0.05, 0.1, 0.2, 0.3}; for example if δi = 0.1 the pur-
ple configuration (4) is obtained by solving equation (10). We
can see that larger noise levels lead to the microphone place-
ments closer to the corners to achieve a robust design.

The robust configurations obtained in this section do not exploit
any prior knowledge on the source position or the noise distribution.
In the next section, we assume that both the source mobility and the
noise distribution are known and we find the average-optimal con-
figuration using an exhaustive search over all possible microphones
placements to find the configuration corresponding to the minimum
average source localization error where the average is taken over the
source location and the noise statistics.

3.2. Comparison with an Average-optimal Array Geometry

In the minimax-optimal design, the philosophy is to guard
against the worst source location and measurement noise. This is
a reasonable assumption if one does not have any prior knowledge
about the mobility pattern of the source or the statistics of the noise.
In some cases, it might be possible to know both the mobility of the
source and the statistics of the noise, thus it would be possible to find
an average-optimal array geometry where the average is taken over
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Array 
Configuration 

Relative noise standard deviation 

0.01 0.02 0.05 0.1 0.2 0.3 

Average-optimum  3.59 7.16 17.9 35.67 73.93 115.4 

Robust 4.1 8.56 19.6 37.4 77.2 122.84 

Compact 35.33 83.98 170.6 200.2 209.34 215.89 

Random 10.44 14.8 35.76 61.57 111.7 173.7 

Corner 6.04 12.24 30.1 60.8 98.74 152.33 

Table 1: Localization error (cm) using different microphone placements at various Guassian noise with a relative standard deviation δi.

the distribution of the source and measurement noise. It will be inter-
esting to know how the minimax-optimal design compares with this
average-optimal design. In this section, we assume that the source
is uniformly distributed inside the enclosure and the measurement
noise is Gaussian. To find the average-optimum array configuration,
the area of the room is discretized into a grid of 600 (uniform) cells.
All of the

`
600
4

´
array configurations are considered while the source

is uniformly randomly sampled inside the room to quantify the av-
erage localization errors. The simulated noise which is added to the
real distances between source and microphones, is ηi‖xi−s‖ where
ηi is a random variable, which follows zero-mean Gaussian with
different standard deviations δi = {0.01, 0.02, 0.05, 0.1, 0.2, 0.3}.
For each source and array configuration, 50 realizations of the noise
are considered and the average localization error for each config-
uration is quantified. The resulting average-optimum microphone
placement is depicted in Fig. 2 where for each value of δi the
configurations (1)–(6) are obtained accordingly.

60  

74 

99 

126 

162 cm 

660 cm 

360 cm 

(1,2) 

(3) 

(4) 

(5) 

(6) 

Fig. 2: Average-optimum microphone configurations for source
localization using four microphones. The numbers show the
placement of the microphones (cm) with respect to the origin
located at the room center. Number (1)-(6) corresponding to
δi = {0.01, 0.02, 0.05, 0.1, 0.2, 0.3} accordingly. One can see
that larger noise levels lead to larger apertures.

We can see that as the level of noise increases, two of the mi-
crophones (black ones) remain at fixed positions on the walls while
the other two microphones positioned at the middle move towards
the walls to minimize the mean (expected) source localization error.
The exact placement of the middle microphones with respect to the
origin of the room coordinates (room center) is indicated at the pic-
tures; we can see that the positions move from 60 cm to 162 cm as
the noise level is increased.

The first two rows of Table 1 compare the performance of the
average-optimal and minimax design for this scenario. It is seen that
minimax-optimal design performs very well (comparable with the
optimal one).

3.3. Source Localization Performance

In this section, we evaluate the performance of source localiza-
tion using different microphone array configurations. Table 1 lists

the localization error for different microphone array design at dif-
ferent Gaussian noise levels. Each number is obtained by averaging
over 600 arbitrary positions of the source where the noisy distances
are given from 50 realizations. The first row corresponds to the
average-optimum placement. The second row indicates the error for
the robust configuration obtained through the proposed algorithm.
We can see that although the robust configuration is different than the
average-optimum one, the expected localization performance is very
close to the optimal value at all noise levels. Hence, the proposed
algorithm enables an efficient microphone array design to achieve
robust source localization. Further empirical observations show that
the localization error using the robust configuration is 40% less than
the average-optimum configuration if the source is located at the en-
closure corners (the worst-case scenario). It may be noted the the
average-optimum configuration is obtained under the assumptions
that the noise distribution is known (Guassian) and the source mobil-
ity is uniform. If these assumptions are violated, it leads to the degra-
dation of the performance obtained from the average-optimum con-
figuration. On the other hand, the robust configuration is achieved
without any assumption on the noise distribution and source mobil-
ity. Hence, the performance can be generalized to other setups.

The third row of Table 1 presents the error if a compact circular
microphone array of diameter 20 cm is used at the center of the room.
We can see that using a compact microphone for localization leads to
huge error which is up to 8 times bigger than the localization accu-
racy achieved using the robust design. This error increases quickly
by increasing the noise on the distances. In addition, we evaluate
the localization error if the microphones are positioned randomly.
For this experiment, we choose 20 random setups and compute the
average localization error for 50 realizations of the noisy distances.
We can see that the localization error is about two times more than
the robust configuration. Finally, the last row shows the localization
error when the microphones are positioned at the corner of the room.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a minimax design for a microphone
array consisting of four microphones in a rectangular enclosure. We
assumed a square-law decay propagation model for the sound and
designed the array for the worst source location and statistics of the
measurement noise. We proposed an efficient algorithm to identify
the robust microphone array configuration to minimize the worst-
case source localization error. We showed that this robust config-
uration yields the performance very close to the average-optimum
design. The robust placement was also shown to achieve substantial
improvement over the compact, ad hoc and heuristic microphone ar-
ray configurations. As an extension, one can consider a more com-
plicated signal model for the source consisting of reflections from
the boundaries which can be characterized using the image-source
model of multipath propagation.
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