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ABSTRACT
A geometrical perspective is introduced that enables unification
and generalization of several results regarding the distributions
of quantities that arise in connection with an important class of
multiple-channel detectors. Standard models on sets of normalized
vectors following from joint Gaussian assumptions in this context
are relaxed to the geometrically appealing model of uniform
distributions on the Stiefel manifold of K-frames in N -dimensional
space. In addition to bolstering geometric insight, several prior re-
sults are subsumed and strengthened by results obtained under this
formulation. Additionally, a generalization of a classical theorem
of W. G. Cochran is enabled by this framework.

Index Terms— Coherence, Multiple-channel detection, Stiefel
manifold, Cochran’s theorem

I. INTRODUCTION
A broad class of multiple-channel detectors are formulated under

Gaussian assumptions on the data under the null hypothesis. Early
examples include the two-channel magnitude-squared coherence
detector [1], [2] and its M -channel counterpart, the generalized
coherence detector [3], [4]. Inspired in part by recent application
interest in spectrum sensing [5], [6], [7] and passive radar [8],
[9], [10], work on multiple-channel detectors for signals having
known rank [6], [11], [12], [13], multiple-channel estimators of
signal rank [5], [12], [14], and multi-channel detection of spatially
correlated signals [15], [16] have received considerable attention in
the research literature over the past few years.

The geometrical nature of detection and estimation problems
in this context is well recognized in the literature, and it has been
exploited in connection with invariances of detection statistics (e.g.,
[17], [18], [16], [19]) and Bayesian formulations [20]. Recently,
geometrical insight has been strengthened through formulations in
terms of Grassmannian and Stiefel manifolds, which arise naturally
when considering collections of subspaces having given dimension
in a vector space of higher dimension.

This paper advances the geometrical insight that has character-
ized most of the work on multiple-channel detection and estimation
in which normalized Gram matrices play a central role. After
establishing the necessary mathematical framework in Section II,
Section III proceeds to show how the Gaussian null hypothesis
assumed in much of the preceding work in this vein can be relaxed
to one that assumes a uniform distribution on a Stiefel manifold.
This model strengthens geometric insight and leads to a derivation
of the distribution of the normalized Gram matrix under the null
hypothesis that subsumes several previously published results as
special cases. In Section IV, this perspective leads to a generaliza-
tion of a classical theorem of W. G. Cochran [21] regarding the
joint distribution of quantities obtained when a random vector is
projected into a collection of mutually orthogonal subspaces that
partition a vector space. Some concluding remarks are given in
Section V.

II. MATHEMATICAL FRAMEWORK
Consider a set of M complex vectors x1;x2; : : : ;xM 2 C

N

with M � N . The Gram matrix of this set of vectors, denoted by
G(x1; � � � ;xM ), is the M �M positive semi-definite Hermitian
matrix whose elements are gij = hxi;xji = xyjxi, where y denotes
conjugate transpose. Denoting by X the N�M matrix whose mth

column is xm, the Gram matrix can be written as G = XXy.
The normalized Gram matrix bG is obtained by normalizing the

vectors xj to unit length; i.e.,

ĝij =

�
xi

kxik ;
xj

kxjk
�
=

hxi;xji
kxikkxjk : (1)

The elements on the main diagonal of bG are ĝii = 1, and its
determinant is

j bGj = jGj
kx1k2 � � � kxMk2 :

In [15] and [16], this structure is extended to the context of
vector-valued time series. In this generalization, Xj 2CK�N for
j = 1; : : : ;M . Denoting X = (Xy

1 ; X
y
2 ; : : : ; X

y
M )y. The Gram

matrix associated with X is G = XXy, which is an M�M block
matrix with block elements Gij = XiX

y
j . It is always possible to

decompose Xj uniquely as

Xj = Rj bXj (2)

where bXj is semi-unitary; i.e., bXj
bXy
j = IK , the K �K identity

matrix, and Rj 2 CK�K is an upper triangular matrix with positive
diagonal elements. Note that RjRyj = XjX

y
j . The block elements

of the normalized Gram matrix bG arebGij = (R�1i )XiX
y
jR

�1
j

y
:

When K = 1, this reduces to (1). The normalized Gram matrix
has the properties that bGii = IK , the K �K identity matrix, and

j bGj = jGj
jG11j � � � jGMM j ;

which is the detection statistic defined and analyzed in [15], [16].
Analysis of the statistics of these detectors under the null hy-

pothesis involves knowledge of various properties of the probability
distribution of bXP bXy or, more generally, the joint distribution
of f bXP1 bXy; � � � ; bXPM bXyg, where the Pj are orthonormal pro-
jectors on CN such that

PM
j=1 Pj = IM . These quantities also

arise in the analysis of the effect of compression on detection and
estimation [22]. When K = 1 and X is a Gaussian random vector
with iid component, then Cochran’s theorem [21], [23] shows that
the random variables XPjXy are independent and �2 distributed
with the degrees of freedom of the distribution depending only
on the dimensions of the subspaces associated with the orthogonal
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projections Pj . Furthermore, each of the quantities bXPj bXy is beta
distributed. Cochran’s theorem can be extended to K > 1. If K > 1
and the matrix X has iid Gaussian components, then the quantities
XPjX

y are independently Wishart distributed [24], [25], [26] and
each of the random matrices bXPj bXy are matrix beta distributed.

This paper has two goals. The first is to weaken the Gaussian
null hypothesis to one that assumes only that the matrix bX is
uniformly distributed on the Stiefel manifold. The usual assumption
that there exists a Gaussian X associated with bX is an unnecessary
artifice, and deriving results directly from uniform distributions on
the Stiefel manifold gives greater geometric insight. The proof thatbXPj bXy given here that is matrix beta distributed with parameters
depending only on the rank of Pj follows directly from the
uniformity of the distribution of bX . This proof involves a judicious
choice of the matrix Y and the construction of the invariant measure
on the Stiefel manifold (3).

The second goal of this paper is to give a simple geometric
proof that the joint distribution of f bXP1 bXy; � � � ; bXPM bXyg is
matrix Dirichlet distributed with parameters depending only on
the ranks of the orthogonal projectors P1; � � � ; PM . This has been
shown by Tan [27] (see also [28]), using an argument involving
Gaussian random matrices. Theorem 2 is a step towards a version
of Cochran’s theorem for uniformly distributed K-frames.

For a subspace S � C
N with dimS > K, the Stiefel manifold

VK(S) is the space of all sets of K orthonormal vectors in S.
Such a set of K orthonormal vectors is called an orthonormal K-
frame or just a K-frame when no confusion arises. A K-frame
can be regarded as an N �K matrix X , satisfying XyX = IK ,
so VK(S) can be regarded the space of all such matrices X .
Note that here and in the remainder of this paper the notation b
denoting orthonormality is dropped. VK(S) is a smooth manifold
of dimension 2(dimS)K�K2 and is a sub-manifold of VK(CN ).

The invariant measure on VK(S) can be constructed following
James [29]. For each X 2 VK(S) choose a K � (dimS � K)

matrix Y such that
�
X
Y

�
is unitary and Y is a smooth function

of X . The invariant measure on VK(S) is constructed by taking
the exterior product of the independent entries in the matrix of

differential forms
�
X
Y

�
dXy, which results in

d�VK(S)(X) =
dimS�KY
j=1

KY
i=1

Re(yyjdxi) Im(yyjdxi)

�
KY
i<j

Re(xyjdxi)
KY
i�j

Im(xyjdxi):

(3)

The matrix Y cannot be chosen to be a smooth function of X
across the whole manifold VK(S), but can be constructed in a set
of domains whose union is the entire manifold. The measure does
not depend on the particular choice of Y (see [29]). The volume
of VK(S) is

vol(VK(S)) =
Z
VK(S)

d�VK(S)(X) =
KY
`=1

vol(S2(dimS�`)+1)

where vol(Sm�1) = 2�m=2=�(m=2) is the volume of the unit
(m � 1)-sphere. In what follows, it will be assumed that the in-
variant measure is normalized. Further, noting that vol(VK(S)) de-
pends only on S through its dimension, the notation vol(VK;dimS)
will be adopted. Finally, BK will denote the multidimensional beta
function which, for integer arguments, can be written conveniently
as

BK(M1; � � � ;ML) =

QL
j=1 vol(VK;Mj )
2LK vol(VK;N ) (4)

where Mj � K for j = 1; � � � ; L,
PL

j=1Mj = N , and
B1(M1;M2) is the usual beta function.

As an example of this geometric view, suppose that
fx̂1; � � � ; x̂Kg is a random orthonormal K-frame, uniformly dis-
tributed on the Stiefel manifold VK;N . Let S � C

N be a subspace
of dimension L > K and PS be the orthogonal projector on to V .
The properties of Gram determinants imply that

jXPSXyj = jG(PSx̂1; � � � ; PSx̂K)j
= jG(PSx̂1; � � � ; PSx̂K�1)jkPWK�1

x̂Kk2;
(5)

where WK�1 = S \ < x̂1; � � � ; x̂K�1 >? and PWK�1
is

the orthogonal projector onto this subspace. In this expression,
< x̂1; � � � ; x̂K�1 > denotes the subspace spanned by the vectors
f̂x1; � � � ; x̂K�1g and ? denotes orthogonal complement. Now x̂K

is a uniformly distributed unit vector in < x̂1; � � � ; x̂K�1>? and
WK�1 is an L-dimensional subspace of < x̂1; � � � ; x̂K�1 >?,
except on a set of measure zero. Theorem 1, for K = 1 (see [30,
Theorem 2]), implies that kPWK�1

x̂Kk2 � B(N�L�(K�1); L),
and this distribution depends only on the subspace WK�1 only
through its dimension. Thus the two factors in (5) are independently
distributed. Continuing in this way yields

jG(PSx̂1; � � � ; PSx̂K)j =
KY
k=1

kPWk�1
x̂kk2;

where the factors on the right-hand side are independently beta
distributed as

kPWk�1
x̂kk2 � B(N � L� (k � 1); L):

Here Wk�1 = S \ < x̂1; � � � ; x̂k�1 >? and W0 = S. The
main result in [16] is a consequence of the above result and some
elementary properties of Gram matrices.

III. UNIFORMLY DISTRIBUTED K-FRAMES
This section begins with some background. Suppose the space of

M -dimensional positive definite Hermitian matrices PM is param-
eterized by the matrix eigenvalues �1; � � � ; �M and eigenvectors
u1; � � � ;uM ,

G = Uy�U (6)

This parameterization is redundant as it stands [31], since multi-
plying U by a unitary matrix U0 such that Uy0�U0 is still diagonal
gives an alternative decomposition for the same matrix. This redun-
dancy can be removed by choosing the phases of one column of U ,
or of its diagonal, and by choosing an ordering for the eigenvalues.
Whatever the choice, U 2 ~U(M) = U(M)=(TM � SM ), where
TM is the group of diagonal M �M unitary matrices (maximal
torus) and SM denotes the symmetric group of M�M permutation
matrices. ~U(M) is a smooth manifold of real dimension M(M�1).

In terms of such a parameterization, the Lebesgue measure on
PM is [31],

MY
j=1

dGjj

MY
i>j

dRe(Gij)d Im(Gij)

=
MY
i<j

(�i � �j)
2
MY
j=1

d�j

MY
i<j

d� ~U(M)(U);

(7)

where d� ~U(M)(U) =
QM
i<j Re(u

y
iduj) Im(uyiduj) is the non-

normalized invariant measure on ~U(M). The volume of ~U(M)
is vol( ~U(M)) = �M(M�1)=2=

QM+1
j=1 �(j). When there is no

confusion, it is convenient to write the measure on the left-hand side
of (7) as dG. Note that the invariant 1-forms uyidui, i = 1; � � � ;M
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on ~U(M), which constitute the diagonal of the matrix UydU , are
linearly dependent on the off-diagonal elements.

Now suppose X 2 CK�N is a K-frame, i.e., X 2 VK(CN ), and
that S is a subspace of CN , with dimS =M . X can be uniquely
expressed as X = A + B with the rows of A in S and the rows
of B in S?. Applying singular value decompositions (SVDs) to A
and B, X can be written non-redundantly as

X = Uy�1=2V + Uy(I � �)1=2W;

where U 2 ~U(K) and � is a diagonal matrix with elements in
[0; 1]. In terms of P , the orthogonal projection onto the subspace
S,

(XP )(XP )y = Uy�U = G;

the Gram matrix of the projection of the K-frame X onto S.

Theorem 1. Let X 2 CK�N , K < N , be uniformly distributed
on the Stiefel manifold VK(CN ). Let S � C

N be a subspace of
dimension M � K and decompose X as

X = Uy�1=2V + Uy(I � �)1=2W (8)

where � is a diagonal matrix with elements in [0; 1], U 2 ~U(M) =
U(N)=(TN�SN ), V 2 VK(S), and W 2 VK(S?). Then the joint
distribution of G = Uy�U , V and W is

dF (G;V;W ) =
1

BK(M;N �M)
jGjM�K jI �GjN�M�KdG

� d�VK(S)(V ) d�VK(S?)(W )

where dG =
QK
j=1 dGjj

QK
i<j=1 dReGij d ImGij and d�VK(S)

denotes the normalized invariant measure on the Stiefel manifold
VK(S).
Proof. The exterior derivative of (8) is

dX = dUy
�
�1=2V + (I � �)1=2W

�
+

1

2
Uy
�
��1=2d�V � (I � �)�1=2d�W

�
+ Uy

�
�1=2dV + (I � �)1=2dW

�
:

Construct a matrix YV with columns consisting of an orthonormal
set of dimS � K vectors in S, all of which are orthogonal to
the rows of V . Similarly construct a matrix YW consisting of an
orthonormal set of (dimS? � K) vectors in S?, all of which
are orthogonal to the rows of W . Multiplying dXy by the unitary
matrix

Q =

0@ X

�U
y(I � �)1=2V + U

y�1=2
W

YV

YW

1A
gives the matrix of invariant 1-forms

QdXy =

0BBBBBBBBBBBBB@

U
y�
� UdU

y + �1=2
V dV

y�1=2

+ (I � �)1=2WdW
y(I � �)1=2

�
U

U
y�
�

1

2
(1� �)�1=2��1=2

d�

� (I � �)1=2V dV y�1=2

+ �1=2
WdW

y(I � �)1=2
�
U

YV dV
y�1=2

U

YW dW
y(I � �)1=2U

1CCCCCCCCCCCCCA
: (9)

Noting that V dV y, WdW y and UdUy are skew-Hermitian and that
the diagonal of UdUy is dependent on the off diagonal elements,
the exterior product of the (ij)th element of the top block of (9)

with the (ij)th and the complex conjugate of the (ji)th elements in
the second block is�

�uiduyj +
p
�i
p
�jvidv

y
j +

p
1� �i

p
1� �jwidw

y
j

�
^
�
�p1� �i

p
�jvidv

y
j +

p
�i
p
1� �jwidw

y
j

�
^
�p

1� �j
p
�ividv

y
j �

p
�j
p
1� �iwidw

y
j

�
= (�i � �j)uidu

y
j ^ vidvyj ^widwy

j :

where ^ denotes the exterior product. The exterior product of the
real and imaginary components of the ith diagonal of the top two
blocks of (9) give

�1

2
d�i ^ vidvyi ^widwy

i :

Therefore,

dF (�; U; V;W )

=
1

BK(M;N �M)

KY
j=1

�M�K
i (1� �i)

N�M�K
Y
i<j

(�i � �j)
2

�
 

KY
j=1

d�j

!
d� ~U(N)(U)d�VK(S)(V ) d�VK(S?)(W ):

In terms of the Gram matrix G = Uy�U , (7) implies this can be
written as

dF (G;V;W ) =
1

BK(M;N �M)
jGjM�K jI �GjN�M�KdG

� d�VK(S)(V ) d�VK(S?)(W ):

An immediate consequence of Theorem 1 is that G, the Gram
matrix of the projection of X onto S, is matrix beta-distributed;
i.e., G � BK(M;N �M). Explicitly,

dF (G) =
1

BK(M;N �M)
jGjM�K j1�GjN�M�KdG: (10)

Note that the beta distribution (10) depends only on the dimension
of the subspace S.

IV. PROJECTIONS ONTO AN ORTHOGONAL
DECOMPOSITION OF C

N

Consider an orthogonal decomposition of CN into mutually
orthogonal subspaces fS1; � � � ; SMg; i.e.,

C
N =

MM
m=1

Sm:

This section considers the joint distribution of the Gram matrices
of the projected components of a uniformly distributed K-frame
with respect to such an orthogonal decomposition.

Suppose X 2 CK�N is a K-frame; i.e., X 2 VK(CN ). X can
be uniquely decomposed as

X =
MX
j=1

Aj

with the rows of Aj in Sj . Applying an SVD to Aj for each
j = 1; � � � ;M , X can be written as

X =
MX
j=1

Uyj�
1=2
j Vj
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where U1; � � � ; UM 2 ~U(K), �1; � � � ;�M are non-negative and
diagonal, and Vj 2 VK(Sm) for j = 1; � � � ;M . Since X is a
K-frame, XXy = IK and consequently

PM
j=1Gj = IK , where

Gj = Uyj�jUj is the Gram matrix of the projection of X onto
the subspace Sj . Denote the standard open M -simplex of K �K
non-negative definite matrices by

�K =

(
(G1; � � � ; GM )jG1; � � � ; GM > 0 and

MX
m=1

Gm = IK

)
:

The following Theorem gives the joint distribution of the Gram
matrices Gj .

Theorem 2. Let X 2 CK�N , K < N , be uniformly distributed on
the Stiefel manifold VK(CN ). Let fS1; � � � ; SMg be an orthogonal
decomposition of CN and decompose X as

X =
MX
j=1

Uyj�
1=2
j Vj (11)

where �j are diagonal matrices with elements in [0,1], Uj 2
~U(M) = U(N)=(TN � SN ), Vj 2 VK(Sj) for j = 1; � � � ;M .
Then the joint distribution of Gj = Uyj�jUj , Vj , for j = 1; � � � ;M
is

dF (G1; � � � ; GM�1; V1; � � � ; VM )

=
jI �PM�1

j=1 Gj jdimSM�K

BK(dimS1; � � � ;dimSM )

 
M�1Y
j=1

jGj jdimSj�K

!

�
M�1Y
j=1

dGj

MY
j=1

d�VK(Sj)
(Vj)

for (G1; � � � ; GM�1; I �
PM�1

j=1 Gj) 2 �K , where dGj =QK
`=1 d[Gj ]``

QK
i<`=1 dRe[Gj ]i` d Im[Gj ]i` and d�VK(S) de-

notes the normalized invariant measure on the Stiefel manifold
VK(S).
Proof. The proof proceeds by induction on the number M of
subspaces in the orthogonal decomposition. For M = 2, the result
is given by Theorem 1. Suppose that (2) is true for M � 1, for the
orthogonal decomposition

C
N =

�
�M�2
j=1 Sj

�
� S0M�1:

If S0M�1 is orthogonally decomposed as

S0M�1 = SM�1 � SM ;

then Theorem 1 can be used to decompose the normalized invariant
measure on VK(S0M�1) as

d�VK(S0
M�1

)(V
0
M�1)

=
jHjdimSM�1�K jI �HjdimSM�K

BK(dimSM�1;dimSM )
dH

� d�VK(SM�1)
(VM�1)d�VK(SM )(VM ):

With the change of variable H 7! GM�1 with

H =
�
1�

M�2X
j=1

Gj
��1=2

GM�1

�
1�

M�2X
j=1

Gj
��1=2

and noting that

dH =
��1�M�2X

j=1

Gj
���KdGM�1

the result extends from the case of M � 1 orthogonal subspaces to
that of M orthogonal subspaces.

An immediate consequence of Theorem 2 is that
(G1; � � � ; GM�1), the set of Gram matrices of the projections
of X onto the components of the orthogonal decomposition
fS1; � � � ; SMg of C

N , is matrix Dirichlet-distributed; i.e.,
(G1; � � � ; GM�1) � DK(dimS1; � � � ; dimSM ) with

dF (G1; � � � ; GM�1)

=
jI �PM�1

j=1 Gj jdimSM�K

BK(dimS1; � � � ; dimSM )

 
M�1Y
j=1

jGj jdimSj�K

!
M�1Y
j=1

dGj

Note that this distribution depends only on the dimensions of the
subspaces Sj in the orthogonal decomposition of CN and not on
which particular subspaces are chosen.

V. CONCLUSIONS
An important class of multiple-channel detectors and estimators

are formulated in terms of Gram matrices containing normalized
data vectors from the channels. Standard null-hypothesis models
on the sets of unit vectors comprising these matrices arise from
Gaussian assumptions on the data prior to normalization. This paper
has relaxed this traditional model to the geometrically appealing
case of uniform distributions on the Stiefel manifold. This not only
fosters further geometric insight, but it also leads to a derivation of
results regarding the distributions of quantities associated with this
class of multiple-channel detectors and estimators that subsume and
generalize previously known results. A generalization of a classical
theorem of W. G. Cochran that is enabled by this framework
was also presented. Finally, it is noted that the quantities treated
here also arise in analysis of the effects of signal compression on
detection and estimation.
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