
A STATE-SPACE APPROACH FOR THE ANALYSIS OF WAVE AND DIFFUSION FIELDS

Stefano Maranò?† Donat Fäh? Hans-Andrea Loeliger†

? ETH Zurich, Swiss Seismological Service, 8092 Zürich
†ETH Zurich, Dept. Information Technology & Electr. Eng., 8092 Zürich

ABSTRACT
The analysis of wave and diffusion fields is a task central to a
myriad of applications. Wave fields are encountered in acous-
tic, radar, and geophysics to name a few. Diffusion fields are
found, for example, in physics, chemistry, and biology.

In this paper, we introduce a state-space approach allow-
ing us to model both wave and diffusion fields within the same
framework. Using state-space models we are able to model
directly the partial differential equation describing the field.
We use the sum-product algorithm to compute the likelihood
of the observations in a computationally efficient manner.

We show how it is possible to estimate the parameters of
the field, locate a point source, reconstruct the field at an ar-
bitrary location.

Index Terms— Wave equation, Diffusion equation,
State-space model, Factor graph.

1. INTRODUCTION

In this work, we propose a state-space approach for the anal-
ysis of wave and diffusion fields. Using state-space mod-
els (SSMs) we are able to model directly the partial differ-
ential equation (PDE) describing the field. We consider the
analysis of fields

v(t, r) : R+ × R→ R (1)

described by linear PDEs with constant coefficients. Fields of
this form include the one-dimensional wave equation and the
diffusion equation. Many others exist [1].

In particular, we are interested in fitting a statistical model
to observed data and to estimate unknown field parameters.
We consider observations {Y (`)

k } of the field taken at uniform
temporal instants {tk}k=1,...,K , at arbitrary spatial locations
S = {r`}`=1,...,L, and corrupted by i.i.d. additive Gaussian
noise

Y
(`)
k = v(tk, r`) + Z

(`)
k (2)

where Z(`)
k ∼ N (0, σ2

` ).
The analysis of wave fields has been thoroughly inves-

tigated within the array processing community. The many
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beamforming techniques developed in decades [2] have appli-
cations in diverse domains such as acoustic, radar, and geo-
physics. Indeed the estimation of direction of arrival and ve-
locity of propagation is a task central to many applications.

Diffusion processes allow to model several physical and
biological phenomena. Analysis of diffusion fields has re-
ceived considerable attention in recent years [3, 4].

2. PROPOSED APPROACH

First, we derive a SSM representation of the PDE describing
the field. Second, we formulate another SSM that enables us
to derive sufficient statistics used by the former SSM. Third,
we describe how it is possible to compute likelihood of the
observations f(θ) for a given parameter vector θ by message
passing on a factor graph. At last, we show how it is possible
to reconstruct the field at arbitrary locations.

In the following, we limit our exposition to second-order
PDEs. The extension to higher order is straightforward.

We denote scalars, vectors, matrices, and sets as a,a,A,A,
respectively. Random variables, either scalar or vector, are
always capitalized.

2.1. A SSM for the field

We Fourier transform with respect to time a linear constant-
coefficients PDE describing a field of the form in (1) and ob-
tain the ordinary differential equation (ODE)

∂2ru(ω, r) + ∂ra1u(ω, r) + a2u(ω, r) = 0 , (3)

where ∂r = ∂/∂r and u(ω, r) denotes the Fourier transform
of v(t, r).

The solutions of (3) are of the form

u(ω, r) = c1(ω)eλ1r + c2(ω)eλ2r , (4)

where c1(ω), c2(ω) are arbitrary Hermitian-symmetric func-
tions and λ1, λ2 are distinct roots of the characteristic equa-
tion λ2 + λa1 + a2 = 0.

Introducing the auxiliary variables u1 and u2, we rewrite (3)
as a matrix differential equation

∂r

[
u1(ω, r)
u2(ω, r)

]
= A′

[
u1(ω, r)
u2(ω, r)

]
, (5)
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Fig. 1: Factor graph of (11) with r`−1, r`+1 ∈ S and r` ∈ T .
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Fig. 2: Factor graph of (13).

with

A′ =

[
0 1
−a2 −a1

]
. (6)

This matrix is the companion matrix of the characteristic
equation associated to (3). Observe that, in general, A′ de-
pends on ω.

In order to deal with the spatial sampling at the sensor
locations S, we solve the matrix differential equation in (5)
for an arbitrary step ∆r` = r`+1 − r` as

[
u1(ω, r`+1)
u2(ω, r`+1)

]
= A`

[
u1(ω, r`)
u2(ω, r`)

]
. (7)

This latter expression has the form of the state equation of a
discrete SSM with state-transition matrix

A` = exp (A′∆r`) . (8)

The matrix exponential can be computed analytically exploit-
ing the factorization of A′.

In light of the previous developments, we formulate the
following discrete SSM

U `+1 = A`U ` (9a)
S` = CU ` (9b)

for ` = 1, . . . , L and with C = [1, 0]. The state vectorU ` can
be interpreted as [u(ω, r`), ∂ru(ω, r`)]

T, i.e., as the Fourier
transform of the field and its spatial derivative at position r`.
The quantity S` can also be interpreted as u(ω, r`) and will
be discussed in Sec. 2.3.

The SSM in (9) couples the Fourier transforms of the field
at different locations according to the law described by (3).

The SSM in (9) can be augmented to model multiple fre-
quencies ωn = 2πn/K. It is sufficient to replace the state-
transition matrix with a block diagonal matrix having as main
diagonal blocks A`(ωn). The state vector and the readout
vector should be enlarged accordingly. The scalar quantity S`
is replaced by a vector S`.

2.2. Point sources

The ODE in (3) can be extended to model the presence of
point sources at locations T = {rm}m=1,...,M by including
an additional term

∂2
ru(ω, r) + ∂ra1u(ω, r) + a2u(ω, r) =

M∑
m=1

δ(r − rm)gm(ω) ,

(10)

where gm(t) is the signal emitted by the m-th source.
Similarly to the homogeneous case, we rewrite (10) in

matrix form and discretize the spatial dimension at locations
r` ∈ S ∪ T . We obtain a SSM with input

U `+1 = A`U ` + B`Gm1T (r`) (11a)
S` = CU `1S(r`) , (11b)

where Gm is interpreted as gm(ω), B` = A`[0, 1]T, and
1A(x) is the indicator function

1A(x) =

{
1 x ∈ A
0 x /∈ A

. (12)

We assume that there is no sensor located at the same position
of a source, i.e. S ∩ T = ∅.

2.3. A SSM for the Fourier transform

We consider another SSM to provide estimates of u(ω, r`),
used as the measurement S` = X

(`)
K in (9) or (11). For k =

1, . . . ,K

X
(`)
k+1 = FX

(`)
k (13a)

Y
(`)
k = Re(X

(`)
k ) + Z

(`)
k , (13b)

with F = exp(iω∆t) and ∆t being the uniform temporal
sampling step.

The effect of the SSM (13) is akin to the effect of a dis-
crete Fourier transform. More details are available in [5]. It
can be augmented to account for multiple frequencies ωn us-
ing a diagonal state-transition matrix F.
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Fig. 3: Measured wave field at different sensors for the
damped wave equation example. The signal amplitude is not
to scale.
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Fig. 4: Measured signal at r = 0 (in red) and the recon-
structed waves (in blue and green).

2.4. Likelihood computation

The SSMs in (9), (11), and (13) precisely describe the rela-
tionships between all the quantities involved, from the mea-
surements {Y (`)

k } to the Fourier transform of the measure-
ments {S(`)}, and to the field {U `}. We model such rela-
tionships using a factor graph [6] and use the sum-product
algorithm to compute the likelihood of the observations.

Fig. 1 depicts a part of the factor graph of (11). Two sen-
sors and a source are modeled. Fig. 2 depicts a part of the
factor graph of (13) for a single measurement.

We consider message passing on the graph using scaled
Gaussian messages. The message on the edge X , in the di-
rection of the arrow, has the form

−→µX(x) = −→γXe−x
T−→WXx/2+x

T−→WX
−→mX , (14)

and is parametrized by scale factor −→γX , mean vector −→mX ,
and inverse covariance matrix

−→
WX . For the sake of exposi-

tion, so far we considered complex vectors and matrices. For
the actual message passing implementation we consider their
real equivalent and use the rules for Gaussian messages given
in [6].

For the setting without sources as in (9), it can be shown
that the log-likelihood is

ln f(θ) =
1

2
−→mT
UL

−→
WUL

−→mUL
+ ln−→γUL

. (15)

This expression allows to perform maximum likelihood (ML)
estimation of the field parameters θ = (a1,a2)T.

We observe that the messages pertaining the SSM in (13)
do not depend on θ, i.e. are sufficient statistics, and can be
computed only once. In contrast, the message passing for (9)
need to be repeated for different values of θ.

Likelihood computation in presence of multiple sources
may require an iterative approach such as what used by the
authors in [7].

2.5. Field reconstruction

In absence of sources, knowledge of u(ω, r) and ∂ru(ω, r) at
one specific location enables us to find c1(ω) and c2(ω) in (4)
by solving[

u(ω, r)
∂ru(ω, r)

]
=

[
eλ1r eλ2r

λ1e
λ1r λ2e

λ2r

] [
c1(ω)
c2(ω)

]
. (16)

Once c1, c2 are known, it is then possible to reconstruct the
field at any location r.

Given the ML estimate of the field parameters θ, the
mean vector −→mUL

contains the ML estimates of u(ω, rL)
and ∂ru(ω, rL). These estimates can be used for the field
reconstruction as in (16).

When sources are present, an estimate of gm(ω) can also
be obtained by message passing from ←−mGm

. Field recon-
struction in this case needs to account for the particular solu-
tions of (10).

3. EXAMPLES

We consider two numerical examples. First, a wave field
modeled by a damped wave equation without point sources.
Second, a diffusion field with a single point source.

3.1. Damped wave equation

Consider the one-dimensional damped wave equation

∂2t v(t, r)− c2∂2rv(t, r) + γ∂tv(t, r) = 0 ,

where c is the medium velocity and γ is a damping factor. We
take the Fourier transform and obtain the Helmholtz equation

∂2ru(ω, r) + κ2u(ω, r) = 0 ,
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Fig. 5: The diffusion field and the measurements (red dots).
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Fig. 6: Estimated diffusion field (blue triangles) at the esti-
mated source location. Actual field (red line).

where κ2 = (ω2 − iγω)/c2. The complex wavenumber ac-
counts for wave dispersion and attenuation.

Following the steps described in Sec. 2.1, we obtain a dis-
crete SSM as in (9) with state-transition matrix

A` = exp

([
0 1
−κ2 0

]
∆r`

)
.

We generate a synthetic wave field with c = 8, γ = 3, and
with two waves traveling in opposite directions. The wave
field is measured at five locations and the noisy measurements
are shown in Fig. 3. It is possible to see the effect of attenua-
tion on the wave amplitude as the waves travel further.

The wave field is modeled with the proposed approach as
in (9). The wave field parameters θ = (c, γ) are unknown to
the algorithm and are estimated with a ML approach.

Fig. 4 compares the signal measured at location r = 0 and
the reconstructed field. The waves are reconstructed using
equation (16). The waves traveling in opposite directions are
separated and additive Gaussian noise is suppressed.

We emphasize that both the waves traveling in opposite
directions are modeled jointly. This is conceptually differ-
ent from beamforming techniques where only one direction
of propagation is considered.

3.2. Diffusion process

Consider the one-dimensional heat equation with with ther-
mal diffusivity α > 0

∂tv(t, r)− α∂2rv(t, r) = 0 . (17)

The state-transition matrix for this field is

A` = exp

([
0 1
iωα 0

]
∆r`

)
. (18)

Fig. 5 depicts a diffusion field generated by a single im-
pulsive point source source. The field is measured at three
locations in the proximity of the source. The measurements
are depicted with red dots.

We model the field with the SSM with input of (11). The
position of the source is unknown to the algorithm. The con-
stant α is known.

We find the ML estimate of the source position with a
search over possible locations rm ∈ [0, 1]. As the source
location is found, an ML estimate of g(ω) is also obtained by
message passing.

Fig. 6 depicts the diffusion field at the source position.
The actual diffusion field (red line) and the estimated value of
the field (blue triangles) are compared. The estimated field is
the inverse Fourier transform of the estimated g(ω).

4. CONCLUSIONS

We proposed an approach for the analysis of wave and dif-
fusion fields using SSMs and factor graphs. Within the pro-
posed framework, it is possible to model fields described by
different PDEs.

The state-space formalism enables us to model directly
the PDE describing the field and to account for localized
sources. The likelihood of the observations is computed ef-
ficiently exploiting the factor graph structure using the sum-
product algorithm. Field parameters and source locations can
be estimated with a ML approach. Estimates of the field, the
spatial derivative of the field, and source signal are found by
message passing.

We constructed numerical examples for a wave field and
a diffusion field. We showed how it is possible to separate
waves traveling in different directions and jointly estimate
wave field parameters. We showed how to estimate the source
position in a diffusion field and to reconstruct the diffusion
field at the source location.

2567



5. REFERENCES

[1] S. Farlow, Partial Differential Equations for Scientists
and Engineers, ser. Dover books on advanced mathemat-
ics. Dover Publications, 1993.

[2] H. L. Van Trees, Optimum Array Processing. John Wiley
& Sons, Inc., 2002.

[3] J. Murray-Bruce and P. Dragotti, “Spatio-temporal sam-
pling and reconstruction of diffusion fields induced by
point sources,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference on,
May 2014, pp. 31–35.

[4] Y. M. Lu and M. Vetterli, “Distributed spatio-temporal
sampling of diffusion fields from sparse instantaneous
sources,” in Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2009 3rd IEEE Inter-
national Workshop on, 2009, pp. 205–208.

[5] C. Reller, H.-A. Loeliger, and S. Maranò, “Multi-sensor
estimation and detection of phase-locked sinusoids,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing, Prague, Czech Republic, May 2011, pp. 3872–
3875.

[6] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and
F. R. Kschischang, “The factor graph approach to model-
based signal processing,” Proc. IEEE, vol. 95, no. 6, pp.
1295–1322, June 2007.

[7] S. Maranò, C. Reller, H.-A. Loeliger, and D. Fäh, “Seis-
mic waves estimation and wavefield decomposition: Ap-
plication to ambient vibrations,” Geophys. J. Int., vol.
191, no. 1, pp. 175–188, Oct. 2012.

2568


