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ABSTRACT

In this paper, we develop a procedure for evaluating the per-
formance of a single moving sensor system to estimate the
range to a stationary emitter based on the discrete-time col-
lection of bearing measurements along the trajectory trav-
elled. We describe a numerical procedure to calculate the
range p.d.f. from a chosen trajectory assuming a constant
quality for the bearing measurements and use this procedure
to evaluate the range root mean-square error as a function of
the distance travelled. The logarithmic spiral family of tra-
jectories is of particular interest, both from the standpoint of
optimal control where such paths are derived, and from ex-
perimental biology, where large birds of prey are observed
to travel in such paths in their search for food. Our perfor-
mance analysis of these scenarios indicates why pitch angles
less than 45◦ are to be preferred when a balanced range esti-
mation performance throughout the trajectory is desired.

Index Terms— antenna arrays, azimuthal angle, path
planning, parameter estimation, spirals, statistical distribu-
tions

1. INTRODUCTION

Bearings-only geolocation algorithms have numerous indoor
and outdoor applications, including emergency response,
healthcare, military, and commercial applications. In two-
dimensional bearings-only geolocation with a single antenna
array, a wireless emitter at position {x0, y0} is passively-
located by its emissions using a moving sensor array col-
lecting noisy bearing measurements θ̂i at positions {xi, yi},
i = {1, 2, 3, . . .}, where

θ̂i(x0, y0) = θi(x0, y0) + ηi (1)

θi(x0, y0) = arctan

(
y0 − yi
x0 − xi

)
(2)

and ηi is an uncorrelated zero-mean bearing noise sequence.
The goal is to reduce the root-mean-square-error (root-MSE)

associated with the position estimate {x̂0,k, ŷ0,k}, where k is
the number of measurements used. In this problem statement,
we assume a stationary emitter and a mobile antenna array,
where the accuracy of the bearings is fixed such that ηi has a
constant standard deviation δ.

An important question arises from such a formulation:
What are the parameters of an optimal trajectory for a single
moving sensor array to passively-locate a transmitter from a
fixed starting range? Such a choice is motivated by practical
concerns for several reasons, such as cost and convenience of
implementation. A single moving sensor array means that no
additional communication is required for data collection, and
no coordination between multiple sensor systems is required.
The approach has the primary constraints that the emitter to
be located is both stationary and persistent. Additionally, it
is assumed that the array collects measurements at a regular
timing intervals, and the movement between collection points
is constant. This choice is reasonable for both airborne and
ground vehicles and allows the widest possible use of the re-
sults.

Past work on this problem can be found in [2, 3, 4, 17]. In
[2], an optimal discrete-time control problem is formulated,
and the optimal trajectory based on this formulation is shown
to be the logarithmic spiral, with a constant angle of attack
to the emitter position. However, no particular parameter
values or numerical studies are indicated showing how per-
formance varies according to the parameters of the problem
such as sensor speed and bearing accuracy. In [3], two differ-
ent approaches to the optimal trajectory path are considered,
including the logarithmic spiral family, and analytical results
are presented depicting error ellipses based on the trajectories
calculated. However, discrete-time effects are not taken into
account, as the bearings are assumed to be measured contin-
uously. In [4], optimal trajectory design is formulated as a
discrete-time optimal control problem with constraints, and
both unconstrained and constrained paths are considered. The
constant angle of attack case, however, is not considred in
their formulation. In [17], optimal trajectory is estimated by
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minimizing the mean square error of predicted emitter posi-
tion, estimated using the extended Kalman filter.

In this paper, we explore the performance of the loga-
rithmic spiral path in estimating the root-mean-square-error
(root-MSE) of the range of a stationary emitter with respect
to the starting position for various trajectory parameters in-
cluding incident angle, velocity, bearing rate, and bearing ac-
curacy. Our focus on the logarithmic spiral is motivated not
only by the work in [2], but also by work in experimental biol-
ogy, where it has been observed that large birds of prey such
as peregrine falcons initially fly in a path similar to that of
a logarithmic spiral in search of food [10, 11, 12]. Our past
studies of position root-MSE indicate that range error dom-
inates the position root-MSE for a single moving sensor for
even moderate bearing accuracies, and thus range root-MSE
represents a simpler criterion from which to compare perfor-
mance. The method used to evaluate the range root-MSE is
a variation of the numerical procedure in [9] originally de-
signed to estimate the achievable root-MSE of the position
independent of the numerical procedure used for position es-
timation. Our numerical studies indicate the performance re-
lationships between the various parameters and enable one to
determine which combinations result in best performance as
a function of observation time and distance.

2. LOGARITHMIC SPIRAL AND DISCRETE
APPROXIMATIONS

The logarithmic spiral centered at (x0, y0) is defined in
(xi, yi) coordinates by the parametric relations

xi = x0 +R exp(−bt) cos(ωt) (3)
yi = y0 +R exp(−bt) sin(ωt) (4)

where R is the initial range, ω is angular velocity, and b is
an angle of incidence parameter. When b = 0, the logarith-
mic spiral becomes a circular path, and b → ∞ results in
a straight-line path. The logarithmic spiral has the mathe-
matical property that the tangent to the spiral at any position
(xi, yi) makes a constant angle or pitch of

φ = arctan
1

b
(5)

with respect to the radial line to the emitter position (x0, y0).
The logarithmic spiral is a self-similar curve that is exhibited
in many natural phenomena such as the collections of stars
in spinning galaxies and biological structures such as shells
[16].

For position estimation in localization, the logarithmic
spiral represents a particular advantage in terms of sensor ar-
ray design. Once an approximate direction of the emitter has
been found, a sensor array need only look in a small angle
about the pitch φ to continue to collect bearing measurements.
Thus, the system can be designed to have a highly-accurate

Fig. 1. Emitter - receiver geometry.

bearing sensor system for a small angular arc, thereby re-
ducing sensor density elsewhere along with amount of sen-
sor calibration required. This efficiency in sensor placement
has been argued as the reason for the optical characteristics
of the eyes of birds of prey [12]. The spatial resolution of
the foveal extent of such birds allows for the spotting of prey
from distances of over 1 km. Then, due to the 40-degree pitch
of the eye, these birds use only one of their eyes to direct
their flight path through the air in an approximate logarithmic
spiral, all the while keeping their heads pointing forward to
minimize air drag [11]. Extensive observations of the spa-
tial flight patterns of the peregrine falcon indicate this type of
hunting behavior in the wild.

In our evaluations of the logarithmic spiral for localiza-
tion, we require a discretized approximation that encom-
passes the physical nature of a sampled measurement system.
We now describe how our trajectories are computed. Fig. 1
(a) illustrates the 2D geometry of emitter position (x0, y0)
and two receiver positions (x1, y1) and (x2, y2) at ranges R
and R2, respectively, in a candidate logarithmic spiral path.
This path is parametrized by the distance d travelled between
successive points as well as the pitch φ. Without loss of
generality, assume that (x0, y0) = (0, 0). Using the law of
cosines,

R2
2 = R2 + d2 − 2Rd cosφ (6)

sin ξ =
d sinφ

R2
(7)

cos ξ =

√
1− d2sin2 φ

R2
2 (8)

Thus, considering the receiver’s second position as (x2, y2) =
(0,−R2), the receiver’s initial position is defined as

y1 =
d2 −R2 −R2

2

2R2
(9)

x1 =
√
R2 − y21 . (10)

This process is repeated for successive positions to construct
the spatially-discrete trajectory. Fig. 2 shows example paths
computed from this procedure as used in the simulations for
various pitch angles.
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Fig. 2. Receiver trajectories used in the simulations.

3. NUMERICAL EVALUATION OF RANGE
ROOT-MSE

We now describe a procedure for evaluating the range accu-
racy obtainable by a moving sensor platform. Our procedure
employs a closed-form p.d.f. of the emitter location that has
been used in a numerical procedure for evaluating of the root-
MSE geolocation performance of a moving sensor array [9].
The location p.d.f. is calculated numerically assuming that
the noise corrupting the Angle of arrival(AOA) measurements
is zero-mean, statistically-independent from bearing to bear-
ing, and Gaussian-distributed with variance σ2. Past experi-
ence in the exploration of the root-MSE for such systems in-
dicates that the primary uncertainty is in the range to the emit-
ter. Thus, in this paper, we simplify the numerical calculation
to only estimate the range root-MSE based on the projected
position of sensor (xi, yi) on the line-of-bearing between the
emitter and the initial receiver position using the p.d.f. of the
measurements θ̂i which is assumed to be known. This cal-
culation is independent of the geolocation algorithm method-
ology and therefore can be used to evaluate the measurement
scenario itself. In this paper, we use the range root-MSE to as-
sess geolocation performance for different path types so that
the effects of bearing accuracy σ, the constant angle-of-attack
φ, and distance between bearing measurements d can be as-
sessed.

The range p.d.f. is evaluated for the random variable
z ∈ [−R,R] with coordinates (xz, yz) = (z sin ξ, z cos ξ)
along the line between the emitter and receiver initial posi-
tion. The probability density function of the location of the
emitter given ith AOA measurement in Cartesian coordinates
is evaluated in [9] given the model for noisy AOA measure-
ments in (1)–(2). Fig. 1 (b) illustrates this geometry, where
ri is the distance between the emitter and the sensor array at
measurement position (xi, yi). Assume that the measurement
errors ηi are i.i.d. Gaussian with zero mean and variance σ2.

Then,

fZ(z)=

√
2√

πσr2max
exp

(
− (θi(xz, yz)−θi)2

2σ2

)
(11)

where θi is the true AOA measurement, rmax = R is the max-
imum value for the range coordinate, and θi(x, y) is defined
as

θi(x, y) =


π
2 − tan−1

(
y−yi
x−xi

)
, (x− xi) ≥ 0,[

3π
2 − tan−1

(
y−yi
x−xi

)]
mod 2π, (x− xi) < 0.

(12)

In this expression, (xz, yz) are the coordinates of the points
along the line between the emitter and initial receiver posi-
tion.

For a moving sensor system, the bearing measurements
form a discrete-time sequence that is statistically-independent.
As such, the evaluation of the range probability density func-
tion given n such measurements t consists of the product of
n individual p.d.f. calculation at each time. The joint range
p.d.f. of these n measurements is

f{Zi}n1 (z) =

∏n
i=1 fZi

(z)∫
R
∏n
i=1 fZi

(ξ)dξ
, (13)

where R = [−R,R] is a set of all points over the line be-
tween the emitter and receiver initial position The probability
density function fZ(z) calculated in (11) is used to construct
this joint p.d.f.

The probability density function in (13) is then used to
evaluate the range root-MSE for a sequence of measurements
along the path, given by

DrMSE(n)=

(∫
R
(z2)f{Zi}n1 (z)dz

)1/2

(14)

This quantity provides a lower bound on the range perfor-
mance of any AOA geolocation algorithm, since this calcula-
tion is dependent on the measurements characteristics and not
the geolocation methodology. Thus, it can be used to explore
performance issues associated with the choise problem sce-
nario as well as the performance of any particular algorithm
applied to this scenario.

4. NUMERICAL EVALUATIONS

In this section, we explore the geolocation performance
of a sensor array moving on a discretized-approximation
to a logarithmic spiral using our range root-MSE evalua-
tion procedure. In all of our examples, the emitter is as-
sumed to be located at the origin (x0, y0) = (0, 0) with-
out loss of generality, and the receiver begins at a posi-
tion of R = 1000 m from the emitter. We consider loga-
rithmic spiral trajectories with incident angles drawn from
φ ∈ {20◦, 35◦, 40◦, 45◦, 60◦, 80◦, 90◦} where the latter cor-
responds to a circle of radius R, constant distances between
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Fig. 3. Root-MSE for trajectories with incident angle
[20◦, 35◦, 40◦, 45◦, 60◦, 80◦, 90◦], σ = 1◦.

bearing measurements of d ∈ {1, 2, 10, 50} m, and angular
accuracies of σ ∈ {1◦, 10◦}. We express the range root-MSE
in terms of the total distance travelled, which for n bearings
is equal to nd. We use total distance travelled as the indepen-
dent variable in order to compare with existing geolocation
performance predictions for the logarithmic spiral based on a
continuous-time optimal control framework [3]. In [3], it is
shown that for “continuously-measured” bearings, each value
of pitch angle φ corresponds to an optimal distance travelled
as a function of the initial range R. Table 1 lists these optimal
distances from a control theory standpoint as a function of
the values of φ considered.

Table 1. Optimal values of total distance travelled for specific
pitch angles φ based on Eqn. (27) of [3].

Incident Angle Distance of Travel
20◦ 855.9510
35◦ 667.9105
40◦ 603.7851
45◦ 540.1815
60◦ 354.2487
80◦ 116.5517
90◦ 0.0000

Fig. 3 shows the range root-MSE for a geolocation sys-
tem for different logarithmic spiral paths and a constant bear-
ing accuracy of σ = 1◦ for four different inter-bearing dis-
tance values d. As can be seen from these plots, larger val-
ues of d yield slower convergence of the range root-MSE for
a given distance travelled, which is to be expected. In this
case of more-accurate bearing measurements, paths with high
pitch angles – those close to a circular path – provide supe-
rior range estimation performance for short travel distances,
but their abilities to estimate range is ultimately limited by
the fact that the approach to the emitter is slowed. For loga-
rithmic spiral paths with an aggressive pitch angle closer to a

Fig. 4. Root-MSE for trajectories with incident angle
[20◦, 35◦, 40◦, 60◦, 80◦, 90◦], σ = 10◦.

direct path, the ability to estimate range is initially poor but
ultimately superior as the sensor system continues to move,
due to the increased angular accuracy provided by a smaller
range to the emitter over time. Interestingly, there seems to be
a saturation of performance in this regard for φ ≤ 45◦, as the
curves tend to collapse onto one another. From these plots, it
would appear that a choice of φ = 40◦ corresponding to the
approximate path taken by birds of prey [11] provides a bal-
anced performance between reasonable initial reductions in
range root-MSE and an accurate estimate of range for longer
distances travelled, even for different rates of travel (different
d values). Note that these results do not follow the predictions
of Table 1, likely because of the real-world discrete-time na-
ture of the bearing measurement process.

Fig. 4 shows the range root-MSE for an identical set of
trajectories and inter-bearing distances for a constant bearing
accuracy of σ = 10◦, corresponding to less-accurate bear-
ing measurements. In this case, all of the trajectories pro-
vide similar initial performances, and the best performance
is ultimately obtained by the most-direct logarithmic spiral
of φ = 20◦. These results indicate that, when the bearing
measurements are inaccurate, movement around the emitter
is statistically-inefficient, and the best initial strategy is to ap-
proach the emitter to make better use of the poor bearing in-
formation being collected.

5. CONCLUSIONS
In this paper, we introduce a method for calculating the range
root-MSE for a moving sensor array based on the trajectory it
traverses in observing bearings from a stationary emitter. The
range root-MSE depends only on the measurements charac-
teristics and receiver trajectory, and thus it is useful for study-
ing the fundamental performance limits of a particular chosen
path. We explore the performance of the logarithmic spiral in
this task, and show that performance depends on bearing mea-
surement rate as well as the pitch angle and distance travelled.
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