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ABSTRACT
In this paper, we present a new method to find solutions to the
time difference of arrival (TDOA)-based source and sensor
localization problem. This paper is a continuation of [1], in
which sources and sensors are localized on the basis of time of
arrival (TOA) measurements. Generally, the TOA is known
if the TDOA and reference-distances with the sound veloc-
ity are given, where the reference-distances are defined as the
distances from the first (reference) sensor to the sources. We
show that when the numbers of sources and sensors are at
least six and eight, respectively, the reference-distances can
be computed directly from TDOA measurements. This means
that in such cases, the positions of the sources and sensors
can be directly estimated in closed-form solutions, except for
one reference-distance, which is estimated by a grid search.
The validity of our algorithm is evaluated by synthetic exper-
iments in noise-free and noisy cases.

Index Terms— Time Difference of Arrival, Time of Ar-
rival, Reference-distance, Source and Sensor Localization

1. INTRODUCTION

Not only source localization but also sensor localization is
important in a wide range of problems involving array sig-
nal processing. For example, in the ad-hoc microphone array
problem [2, 3, 4, 5, 6, 7, 8], sensor localization has received
significant attention. In this paper, we study source and sen-
sor localization based on time difference of arrival (TDOA)
measurements. This is a continuation of [1], in which this
problem was studied on the basis of time of arrival (TOA)
measurements. The TOA is known if the TDOA and refer-
ence distances with the sound velocity are given, where the
reference-distances are defined as the distances from the first
(reference) sensor to the sources. Thus, this paper focuses on
estimating the reference-distances from TDOA measurements
to obtain TOA values, and applying the algorithm proposed in
[1] to determine the positions of sources and sensors.

Several solutions to localization based on the TDOA have
been proposed. Some are iterative methods based on least-
squares criteria [4, 9, 10, 11, 12] or a maximum likelihood

principle [3, 13, 14, 15], and some are non-iterative meth-
ods [16, 17]. Generally, since the cost functions used in the
iterative methods are nonlinear and nonconvex, they can be
easily trapped at local minima. In the localization, local min-
ima are very far from true solutions. Therefore, determining
the closed-form solution for source and sensor positions has
attracted considerable attention.

Recently, by using a small rank constraint for the distance
matrix, as discussed in [18, 19, 20], Kuang et al. [16, 17] pro-
posed novel methods to estimate source and sensor positions
on the basis of TOA and TDOA measurements. Our works
are similar to their works on solving TOA-based localization
and applying TDOA-based localization after estimating the
reference-distances. Kuang et al. showed that the positions of
sources and sensors can be computed using parameters that
are the solutions of multivariate quartic and cubic equations.
They then used the Gröbner basis method [21] and Macaulay2
software [22] to obtain formulae for these unknown parame-
ters and also formulae for the source and sensor positions.
However, the Gröbner basis method and Macaulay2 software
are not familiar to non-mathematicians and are difficult for
general use.

By carefully studying the properties of the TOA and
TDOA-based localizations, we prove that when the numbers
of sources and sensors are at least six and eight, respectively,
the positions of the sources and sensors can be computed
using parameters that are the solutions of univariate quartic
equations. Since there are closed-form solutions of univariate
quartic equations, our method is simple, accurate, and stable.

2. TDOA-BASED SOURCE AND SENSOR
LOCALIZATION

Let us consider M sources and N sensors, and let the po-
sitions of the sources and sensors in R3 be x1, . . . ,xM and
y1, . . . ,yN , respectively. For simplicity, we hereafter refer to
their positions as the x-group and y-group. Source and sen-
sor localization is considered on the basis of the following
two problems:

1. Given distance matrix D = (dmn)M×N , where dmn =
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‖xm − yn‖2, the determination of x1, . . . ,xM and
y1, . . . ,yN .

2. Given distance-difference matrix ∆ = (δmn)M×(N−1),
where δmn = ‖xm − yn+1‖2 − ‖xm − y1‖2, the de-
termination of x1, . . . ,xM and y1, . . . ,yN ,

where ‖ · ‖2 is the Euclidean distance. It is clear that the
second problem is more general than the first problem, and we
can consider the first problem as a part of the second problem.

In acoustic signal processing problem, the distance matrix
D can be determined from the sound velocity and traveling
times of sounds from each source to each sensor (TOA), and
the distance-difference matrix ∆ can be determined from the
differences between these traveling times (TDOA). Thus, in
acoustic applications, the first problem is named TOA-based
source and sensor localization, which is to determine the po-
sitions of sources and sensors from TOA measurements, and
the second problem is named TDOA-based source and sensor
localization, which is to determine the positions of sources
and sensors from TDOA measurements.

Generally, TOAs are estimated when the sources and sen-
sors are synchronous (i.e., all sources and sensors have a com-
mon clock), and TDOAs are estimated when only the sen-
sors are synchronous (i.e., all sensors have a common clock).
Therefore, the applicability of TDOA-based localization is
much wider than that of TOA-based localization.

Formulae for the positions in the TOA-based localization
problem have previously been found by us [1] for some cases.
As a continuation of this work, in this paper we solve the
TDOA-based localization problem on the basis of the follow-
ing two steps: (i) we find formulae for the reference-distances
‖xm − y1‖2 using the distance-difference matrix ∆, and (ii)
we find formulae for the x- and y-groups using the distance
matrix D = (dmn)M×N , where dm1 = ‖xm − y1‖2 and
dmn = δm,n−1 + ‖xm − y1‖2 for n > 2. Note that D
and ∆ are invariant under reflection, translation, and rotation.
To remove this ambiguity, we assume x1 ≡ (0, 0, 0)T ,x2 ≡
(0, 0, α)T , and y1 ≡ (0, β, γ)T (α, β > 0).

3. REFERENCE-DISTANCE ESTIMATION

3.1. Rank constraint for distance matrix

We denote αm = ‖xm − y1‖2, m = 1, . . . ,M , as the
reference-distances to be estimated. The distance matrix D
is determined from the distance-difference matrix ∆ and the
reference-distances as: dm1 = αm and dmn = δm,n−1 + αm
for n > 2. Note that since d2

mn − d2
m1 − d2

1n + d2
11 =

−2(xm − x1)T (yn − y1), we have δ2
mn − δ2

1n + 2δmnαm −
2δ1nα1 = −2(xm − x1)T (yn+1 − y1). We set X = (x2 −
x1, . . . ,xM − x1), Y = −2(y2 − y1, . . . ,yN − y1), and
matrix Λ = (λmn)(M−1)×(N−1), where

λmn = δ2
m+1,n − δ2

1n + 2δm+1,nαm+1 − 2δ1nα1, (1)

and we also have Λ = XTY. It can be verified that the ranks
of matrices X and Y are at most three, so the rank of Λ is
at most three. Thus, the following polynomial equations are
obtained for all 1 6 m1 < m2 < m3 < m4 6 M − 1 and
1 6 n1 < n2 < n3 < n4 6 N − 1:

det


λm1n1

λm1n2
λm1n3

λm1n4

λm2n1 λm2n2 λm2n3 λm2n4

λm3n1 λm3n2 λm3n3 λm3n4

λm4n1
λm4n2

λm4n3
λm4n4

 = 0. (2)

Given m1,m2,m3, and m4, there are (N − 1)(N − 2)(N −
3)(N − 4)/24 polynomial equations expressed in (2), and
each polynomial has five variables α1, αm1+1, αm2+1,
αm3+1, and αm4+1. In this paper, we assume that α1 is a
known value and determine closed-form solutions of αm1+1,
αm2+1, αm3+1, and αm4+1 in terms of the value of α1 and
the polynomial equations given in (2). Then, we can simply
apply a grid search to determine α1. We prove that when
M > 5 and N > 8, the variables αm1+1, αm2+1, αm3+1,
and αm4+1 can be determined from ∆ and α1 by simple
closed-form solutions. Further more, when M > 6, we also
prove that the variable α1 can be determined on the basis
of differences, for example, the difference in α2 when it is
estimated in the cases of (m1,m2,m3,m4) ≡ (1, 2, 3, 4) and
(m1,m2,m3,m4) ≡ (1, 2, 3, 5).

3.2. Linear method of solving polynomial equations

Assume that α1 is known. Letting amn = δ2
m+1,n − δ2

1n −
2δ1nα1 and bmn = 2δm+1,n, (1) implies that λmn = amn +
bmnαm+1. Given m1,m2,m3,m4, for each 1 6 n1 < n2 <
n3 < n4 6 N − 1, (2) gives a polynomial equation in four
variables αm1+1, αm2+1, αm3+1, αm4+1 corresponding to
16 monomials T = {z1z2z3z4 , z1z2z3 , z1z2z4 , z1z3z4 ,
z2z3z4 , z1z2 , z1z3 , z1z4 , z2z3 , z2z4 , z3z4 , z1 , z2 , z3

, z4 , 1}, where z1 = αm1+1, z2 = αm2+1, z3 = αm3+1,
z4 = αm4+1. Let Bn1n2n3n4 be the vector of coefficients
of the polynomial corresponding to (n1, n2, n3, n4) and the
order of the monomials T. The vector Bn1n2n3n4

is given in
Table 1 and is simply expressed in terms of aminj

and bminj

with 1 6 i, j 6 4, and TBTn1n2n3n4
= 0. Let Bm1m2m3m4

be the matrix whose rows are Bn1n2n3n4 for all n1, . . . , n4.
Bm1m2m3m4 has a size of [(N − 1)(N − 2)(N − 3)(N −
4)/24]× 16 and

TBT
m1m2m3m4

= 0, (3)

where 0 is the zero vector. The solvability of (3) depends
on the rank of Bm1m2m3m4 , which is given by the following
lemma.

Lemma 1. If N > 8 and the x-group is full rank, i.e., none
of the points in the x-group lie on the same plane, and the y-
group is also full rank, we have rank(Bm1m2m3m4) = 15.
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Table 1. Formula for Bn1n2n3n4
, given m1,m2,m3, and m4.

Bn1n2n3n4
= A4321 +A4213 +A4132 −A4123 −A4312 −A4231 +A1423 +A2431 +A3412 −A3421 −A2413 −A1432

+A3241 +A2143 +A1342 −A1243 −A2341 −A3142 +A1234 +A2314 +A3124 −A3214 −A2134 −A1324

Ai1i2i3i4 = (ei1i2i3i4 , eī4i1i2i3 , eī3i1i2i4 , eī2i1i3i4 , eī1i2i3i4 , eī3 ī4i1i2 , eī2 ī4i1i3 , eī2 ī3i1i4 , eī1 ī4i2i3 , eī1 ī3i2i4 ,
eī1 ī2i3i4 , eī2 ī3 ī4i1 , eī1 ī3 ī4i2 , eī1 ī2 ī4i3 , eī1 ī2 ī3i4 , eī1 ī2 ī3 ī4),

where ej1j2j3j4 = cm1nj1
cm2nj2

cm3nj3
cm4nj4

with cmknjh
= amknjh

if jh = ih, and cmknjh
= bmknjh

if jh = īh.

Since the length of the paper is limited, we do not give
the proof of the lemma here. A linear method of solving the
polynomial equations in (3) is explained as follows: Let Q
and R be the QR-factorization of Bm1m2m3m4

, where Q is a
unitary matrix and R is an upper triangular matrix [23]. Then
we have the following lemma.

Lemma 2. If rank(Bm1m2m3m4
) = 15 and αm1+1, αm2+1,

αm3+1, αm4+1 are solutions of (3), it can be verified that

αm4+1 = −R15,16

R15,15
, αm3+1 = −R14,16

R14,14
− R14,15

R14,14
αm4+1

αm2+1 = −R13,16

R13,13
− R13,15

R13,13
αm4+1 −

R13,14

R13,13
αm3+1

αm1+1 = −R12,16

R12,12
− R12,15

R12,12
αm4+1 −

R12,14

R12,12
αm3+1

− R12,13

R12,12
αm2+1,

(4)

where Rij denotes the (i, j)-element of R.

Proof. Because the solutions of (3) are the solutions of
TRT = 0, R is an upper triangular matrix with 16 columns,
and rank(R) = rank(Bm1m2m3m4

) = 15, it can be veri-
fied that Ri,i 6= 0, Rj,i = 0 (1 6 j < i 6 15) and (4) is
satisfied.

3.3. Reference-distances estimation algorithm

In this subsection, we propose a method to estimate the
reference-distances αm, 1 6 m 6 M for the cases M > 6
and N > 8. In our problem, we assume that the x-group and
y-group are full rank and that the distances between points in
the x-group and points in the y-group are finite.

3.3.1. Estimation of αm (m > 2) by averaging of all combi-
nations

Lemma 1 and Lemma 2 confirm that using any value of α̂1 to
estimate α1 and m > 2, for each 1 6 m1 < m2 < m3 6
M − 1, m1,m2,m3 6= m − 1, (4) gives an estimate of αm
that is denoted by α̂(m|m1+1,m2+1,m3+1). This is a function
of α̂1. Generally, a different triplet (m1,m2,m3) gives a dif-
ferent estimate of αm. Thus, αm is naturally estimated by the
following formula:

α̂m =
∑

16m1<m2<m36M−1
m1,m2,m3 6=m−1

6α̂(m|m1+1,m2+1,m3+1)

(M − 2)(M − 3)(M − 4)
. (5)
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Fig. 1. Example of determining α1 for M = 6, N = 8. The
red points are minimum points.

The error in the estimation of αm is given by

E(αm) =
∑

16m1<m2<m36M−1
m1,m2,m3 6=m−1

6
(
α̂m − α̂(m|m1+1,m2+1,m3+1)

)2
(M − 2)(M − 3)(M − 4)

.

(6)

3.3.2. Grid search for α1

The conditionM > 6 infers (M−2)(M−3)(M−4)/6 > 1,
and E(αm) is positive if the values α̂(m|m1+1,m2+1,m3+1) are
not equal. It can be verified that if α̂1 = α1, the error value
E(αm) should be zero. Thus, we propose

α1 = arg min
α̂1

M∑
m=2

E(αm). (7)

To solve (7), an upper bound of α1 is needed. Fortunately, in
most acoustic applications, we generally have an upper bound
of α1. When the upper bound of α1 is given, the value of α1

can be found by (7) if we consider α̂1 as a running parameter
on the bounded interval of α1. An example of the solution of
(7) is given in Figure 1. In this example, M +N points in the
x- and y-groups are chosen as independently and uniformly
distributed points inside a cube of side 1 m. The upper bound
of α1 is 1.5 m. When α1 is determined, the parameters αm
(m > 2) are determined from (4) and (5).

4. SOURCE AND SENSOR LOCALIZATION BASED
ON ESTIMATED DISTANCE-MATRIX

In the previous section, we confirmed that the reference-
distances αm = ‖xm − y1‖2 can be estimated from the
distance-difference matrix ∆. In such a case, the distance
matrix D can be determined as follows: dm1 = αm and
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Fig. 2. Histograms of log10(Eref ) and log10(Epos) for 1000
independent experiments for noise-free and noisy cases.

dmn = αm + δm,n−1 for n > 2. Now, we focus on the
problem of how to estimate x1, . . . ,xM and y1, . . . ,yN
from D. In [1], we completely solved this problem for the
cases of N > 8. The main ideas obtaining this result are
briefly presented as follows: From subsection 3.1, we know
that Λ = XTY. The full-rank property of the x-group and
y-group infers that the rank of Λ is three. By factorizing Λ
using, for example, singular value decomposition, we have
two matrices U and V, i.e., Λ = UTV. U and V are used
to determine X and Y, respectively, in the sense that there
exists an invertible (3 × 3) matrix L such that X = L−TU
and Y = LV. Thus, if L, x1, and y1 are known, then xm and
yn are known for all m,n. As our assumption, x1 is known.
L and y1 are determined by the following proposition.

Proposition 1. L and y1 are computed directly by (i) α =
‖x1 − x2‖2, which is a solution of a quartic equation whose
coefficients are given by D (N > 9), or (ii) a solution of
another quartic equation whose coefficients are given by α
and D (N = 8).

Proposition 1 is a combination of Proposition 1 and
Proposition 2 in [1].

5. EVALUATION AND CONCLUSION

To evaluate our formulae, we consider the error Eref =(
1
M

∑M
m=1(α̂m−αm)2

)1/2
in the estimation of the reference-

distances and the error Epos =
(

1
M+N

∑M
m=1 ‖x̂m−xm‖22 +∑N

n=1 ‖ŷn − yn‖22
)1/2

in the estimation of positions. These
errors are evaluated in 1000 independent experiments, in
each of which M is chosen uniformly from {6, . . . , 50}, N is
chosen uniformly from {8, . . . , 50}, and the source and sen-
sor positions are simulated as independently and uniformly
distributed points inside a cube of size 1 m. Many differ-
ent levels of independent Gaussian noise are added to the
distance-difference matrix, i.e., ∆std ← ∆ + std ∗ N (0, 1),
where std denotes a different level (meter) and N (0, 1) de-
notes an (M,N − 1) Gaussian matrix with zero mean and
identity covariance to study a noisy environment. The errors
obtained in the experiments are shown in Figure 2.

 Noise level: std (meter)
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Fig. 3. Mean and standard deviation of log10(Epos) compared
with CRLB in 1000 independent synthetic experiments.

For the case of estimating source and sensor positions,
Figure 3 presents a comparison of results obtained using (i)
the proposed method (using TDOA measurement), (ii) Le’s
method ([1], using TOA measurement), (iii) the closed-form
solution of Crocco’s method ([24], using TOA measurement),
and (iv) Cramér-Rao lower bound (CRLB) for TOA-based
localization estimation [3]. Since the information of TOA
measurement contains the information of TDOA measure-
ment, the above comparison is valid for evaluating the es-
timation accuracy of our method for TDOA-based localiza-
tion. Because the closed-form solution of Crocco’s method
only works for M,N > 7 and x1 ≡ y1, the synthetic ex-
periments whose results are shown in Figure 3 are set up as-
suming these conditions. For noisy cases, independent Gaus-
sian noises are added to distance matrices in the TOA-based
method, and distance-difference matrices are computed from
noisy distance matrices in the TDOA-based method. The
mean and standard deviation of log10(Epos) in 1000 indepen-
dent experiments are computed.

From the results given in Figure 2 and Figure 3, we con-
clude that our estimations for the TOA-based [1] and TDOA-
based (this paper) localizations are accurate and stable. More-
over, since our formulae have a closed-form with an unknown
grid-search parameter, i.e., α = ‖x2 − x1‖2 for TOA-based
localization and α1 = ‖y1 − x1‖2 for reference-distance es-
timation, our algorithms are simple.

In summary, on the basis of [1], we propose an efficient
method for TDOA-based source and sensor localization by
estimating the reference-distances from TDOA measurements
when the numbers of sources and sensors are at least six and
eight. The validity of our method is demonstrated by perform-
ing synthetic experiments and comparisons with the efficient
method proposed by Crocco et al. [24] and the CRLB.
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