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ABSTRACT

This paper investigates the problem of how to improve angle-of-
arrival (AOA) target localization accuracy by finding an optimal
AOA sensor deployment strategy in 3D space. Under the assump-
tion of constant absolute elevation angles for the sensors, a novel
and simple optimal sensor deployment criterion is proposed based
on minimizing the trace of inverse Fisher information matrix. Our
analysis shows that when sensor elevation angles equal ±42.2869o

and twice of azimuth angles have equal angular distribution with
uniform distance from the target and equal noise covariance, the
lowest mean squared error is achieved. Besides, with more sensors
placed closer to the target, a lower mean squared error is attained.
Simulation examples are presented to verify the effectiveness of the
developed optimality criterion.

Index Terms— Angle-of-arrival localization, Fisher informa-
tion matrix, Cramér-Rao lower bound, optimal sensor deployment.

1. INTRODUCTION

Angle-of-arrival (AOA) localization is a classical passive target lo-
calization method which has been widely used in both military and
civilian applications. A weighted least-squared estimator was first
used for AOA localization in 2D that can be considered as an ap-
proximate maximum likelihood estimator (MLE) in the presence of
small independent noise [1]. The pseudo-linear estimator (PLE), a
linear least squared estimator with a closed-form solution, was de-
signed in [2] for target localization via bearing observations. In [3],
an improved PLE with bias compensation strategy was developed
for bearings-only passive target localization. The extended Kalman
filter is another useful method for the nonlinear AOA target localiza-
tion problem [4]. The application of the range-parameterised EKF
with improved stability was considered in [5]. In [6] an instrumen-
tal variable estimator was presented for 3D AOA target localization.
Central to AOA localization is triangulation of the angle measure-
ments acquired by many sensors, which means that sensor measure-
ments and placements play a crucial role for target localization [7].

Optimal sensor placement strategies have been studied exten-
sively. In [8], the Cramér-Rao lower bound (CRLB) is used to eval-
uate the estimation performance for the bearing-only localization
method. In [9] the problem of how to get an accurate estimation re-
sult was transformed into how to maximize the determinant of Fisher
information matrix (FIM). Thus, a relationship between estimation
performance and the FIM was established. An optimal angular sen-
sor deployment criterion based on D-optimum method (maximizing
the determinant of the FIM) [10] for AOA target localization was
proposed and proven [11].

However, the results in these previous works can only be used
for 2D localization. In 3D, as the FIM becomes more complex, the

development of optimal sensor deployment for AOA localization be-
comes more challenging and has not been fully addressed. In [12],
a unified optimal sensor placement strategy for bearing-only, range-
only, or received-signal-strength sensors in 2D and 3D was proposed
based on framework theory to maximize the determinant of the FIM.
In [13] an A-optimum method (minimizing the trace of CRLB) was
applied to optimal sensor placement for 3D underwater target local-
ization. In [14], a simple and clear result was obtained by minimiz-
ing the trace of the CRLB for elliptic time-of-arrival optimal receiver
placement in both 2D and 3D. The optimal sensor geometry was de-
scribed by a numerical solution.

In this paper, we focus on the optimal sensor deployment for 3D
AOA target localization when all sensors have the same absolute ele-
vation angle from the target. The FIM is developed by analyzing the
3D sensor measurement model. A new and simple optimal angular
sensor deployment criterion is proposed based on an inequality prop-
erty of the A-optimality criterion [10]. This result can be easily used
for any 3D AOA target localization algorithm that is approximately
efficient. The paper is organized as follows. Section 2 describes the
3D AOA sensor deployment optimization problem. The main results
of this paper are presented in Section 3. Section 4 introduces an es-
timation algorithm based on the extended Kalman filter (EKF) and
presents simulation examples for verifying the results presented in
Section 3. Section 5 draws the conclusion.

2. PROBLEM FORMULATION

Fig. 1 shows the kth AOA sensor measurements for target localiza-
tion in 3D comprised of an azimuth angle θk and an elevation angle
φk.
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Fig. 1: AOA sensor measurements in 3D space.

The ideal (noiseless) angle measurements can be written as:

θk = arctan
ye − yk
xe − xk

, −π < θk ≤ π (1)

φk = arctan
ze − zk

||[xe, ye]− [xk, yk]|| , −π
2
< φk ≤

π

2
(2)
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where the real target location is [xe, ye, ze] and the kth sensor is
located at [xk, yk, zk] in 3D Cartesian coordinates. The distance
between the target and the kth sensor is dk and the projected distance
in the xy plane is dxyk = ||[xe, ye]− [xk, yk]|| = dk cosφk where
|| · || means the Euclidean norm.

The main objective is to locate the target in 3D from multiple
angle measurements collected by sensors. The sensor deployment
can influence the localization performance significantly [12]. Thus
we first need to determine how the sensor deployment affects the
target localization accuracy.

The noisy angle measurements of sensor k can be written as

zk = [θk, φk]T + nk (3)

where zk is the sensor measurement at sensor k and nk is the addi-
tive zero-mean independent Gaussian noise vector. The noise vari-
ances for θk and φk measurements are σ2

θ and σ2
φ, respectively. If

there areN sensors in the target localization system, the sensor mea-
surement covariance is

Σ =

[
σ2
θIN×N 0

0 σ2
φIN×N

]
2N×2N

. (4)

In this paper, we assume i.i.d. noise, i.e., σ2
θ = σ2

φ = σ2. Then we
can write the Jacobian of measurement errors evaluated at the true
azimuth and elevation angles as [6]

Jk =



sin θ1
dxy1

− cos θ1
dxy1

0

:̇ :̇ :̇
sin θN
dxyN

− cos θN
dxyN

0
sinφ1 cos θ1

d1

sinφ1 sin θ1
d1

− cos2 φ1
dxy1

:̇ :̇ :̇
sinφN cos θN

dN

sinφN sin θN
dN

− cos2 φN
dxyN


2N×3

. (5)

The Fisher information matrix Φ is given by [15]:

Φ = JTk Σ
−1Jk (6a)

=
1

σ2
JTk Jk. (6b)

The FIM is shown in (7) at the bottom of this page. In the next
section we study how to deploy the sensors in order to optimize the
FIM for estimation error minimization.

3. OPTIMAL SENSOR DEPLOYMENT

In order to get an accurate target location, we need to define a mea-
sure of estimation error. There are different criteria for this purpose.
In this work we adopt the A-optimum criterion [10] which is equiv-
alent to minimizing the trace of the CRLB. We assume a uniform
target range from the sensors, i.e., d1 = d2 = · · · = dN . Then the

optimal sensor deployment problem reduces to finding the optimal
φk and θk that minimize the trace of the CRLB.

Note that

CRLB = Φ−1. (8)

Based on the Courant-Fischer-Weyl min-max principle [16] and the
result in [13] [14], the trace of the CRLB cannot be smaller than the
sum of the FIM’s reciprocal diagonal elements. Thus we have

tr(CRLB) > σ2

(
1

N∑
k=1

(
sin2 θk

d2
k
cos2 φk

+ sin2 φk cos2 θk
d2
k

)
+

1
N∑
k=1

(
cos2 θk

d2
k
cos2 φk

+ sin2 φk sin2 θk
d2
k

) +
1

N∑
k=1

cos2 φk

d2
k

) (9)

where tr(CRLB) means the trace of the CRLB. The inequality in
(9) becomes an equality only when Φ is a diagonal matrix, which
implies

N∑
k=1

(
− sin θk cos θk
d2k cos2 φk

+
sin2 φk sin θk cos θk

d2k

)
= 0 (10a)

N∑
k=1

− sinφk cos θk cosφk
d2k

= 0 (10b)

N∑
k=1

− sinφk sin θk cosφk
d2k

= 0. (10c)

In order to simply the inequality (9) we define

a =

N∑
k=1

(
sin2 θk

d2k cos2 φk
+

sin2 φk cos2 θk
d2k

)
(11a)

b =

N∑
k=1

(
cos2 θk

d2k cos2 φk
+

sin2 φk sin2 θk
d2k

)
(11b)

where a and b are both positive. Using

1

a
+

1

b
>

2
√
a
√
b

(12a)

1

2
√
a
√
b
>

1

a+ b
(12b)

we get
1

a
+

1

b
>

4

a+ b
. (13)

Φ =
1

σ2



N∑
k=1

(
sin2 θk

d2
k
cos2 φk

+ sin2 φk cos2 θk
d2
k

) N∑
k=1

(
− sin θk cos θk
d2
k
cos2 φk

+ sin2 φk sin θk cos θk
d2
k

) N∑
k=1

− sinφk cos θk cosφk

d2
k

N∑
k=1

(
− sin θk cos θk
d2
k
cos2 φk

+ sin2 φk sin θk cos θk
d2
k

) N∑
k=1

(
cos2 θk

d2
k
cos2 φk

+ sin2 φk sin2 θk
d2
k

) N∑
k=1

− sinφk sin θk cosφk

d2
k

N∑
k=1

− sinφk cos θk cosφk

d2
k

N∑
k=1

− sinφk sin θk cosφk

d2
k

N∑
k=1

cos2 φk

d2
k

 (7)
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Substituting (13) into (9) gives

σ2

(
1

N∑
k=1

(
sin2 θk

d2
k
cos2 φk

+ sin2 φk cos2 θk
d2
k

)+

1
N∑
k=1

(
cos2 θk

d2
k
cos2 φk

+ sin2 φk sin2 θk
d2
k

) +
1

N∑
k=1

cos2 φk

d2
k

)
>

σ2

(
4

N∑
k=1

(
1

d2
k
cos2 φk

+ sin2 φk

d2
k

) +
1

N∑
k=1

cos2 φk

d2
k

)
(14)

where the equality holds when a = b. A solution for a = b is
that 2θk have equal angular distribution, which also satisfies (10) if
N ≥ 3. In this paper we assume all sensors have the same absolute
elevation angle from the target, |φ1| = |φ2| = · · · = |φN |.

Now the optimization problem becomes how to minimize the
right side of the inequality (14). Let ck = cos2 φk. Based on (9) and
(14) we get

tr(CRLB) > σ2

(
4

N∑
k=1

(
1

d2
k
ck

+ 1−ck
d2
k

) +
1

N∑
k=1

ck
d2
k

)
. (15)

Under the constraints that d1 = d2 = ··· = dN , |φ1| = |φ2| = ··· =
|φN | and the 2θk have equal angular distribution, the inequality (15)
becomes

tr(CRLB) = σ2 d
2
k

N

3c2k + ck + 1

−c3k + c2k + ck
. (16)

Also we know ck ∈ (0, 1]. In order to get the smallest tr(CRLB),
we first calculate the derivative of the right side in (16) with respect
to ck and set it equal to zero:

σ2 d
2
k

N

3c4k + 2c3k + 5c2k − 2ck − 1

(−c3k + c2k + ck)2
= 0 (17)

from which the only real arithmetical solution is obtained as
ck = 0.547282350699011. Thus tr(CRLB) will reach the
minimum bound with the optimal sensors elevation angle φk =
±42.2868668755864o. Therefore the optimal sensor deployment is
given by

φk = ±42.2869o

θk =

{
360o

N
(k − 1) + θ0, if φk = 42.2869o

360o

N
(k − 1)− 180o + θ0, otherwise

(18)

where θ0 can be any constant angle, k = 1, 2, 3, ..., N and N ≥ 3.
Note that for N = 2 it is not possible to find θ1 and θ2 that will
satisfy (10).

Furthermore, from (16) it is easy to see that if we increase
the number of sensors N and deploy them closer to the target, the
tr(CRLB) will be smaller leading to a better estimation perfor-
mance.

4. SIMULATION STUDIES

4.1. Target location estimator

In order to verify the effectiveness of the proposed optimality crite-
rion, we design a simple AOA localization system that can be used

to evaluate the estimation performance. As the 3D AOA target local-
ization has a nonlinear measurement equation, an extended Kalman
filter (EKF) is used. Here the target state vector is defined as

X = [xe, ẋe, ye, ẏe, ze, że]
T (19)

where ẋe, ẏe, że are the target velocity. In this paper we assume the
target is stationary thus ẋe, ẏe, że are all zeros. The EKF algorithm
based on the state-space equations is given by [4]:

Xk+1|k = FkXk|k (20a)

Pk+1|k = FkPk|kF
T
k (20b)

zk = [θk, φk]T + nk (20c)

Kk = Pk+1|kH
T
k (HkPk+1|kH

T
k + Rk)−1 (20d)

Pk+1|k+1 = (I −KkHk)Pk+1|k (20e)
Xk+1|k+1 = Xk+1|k + Kk(zk − hk+1|k) (20f)

h(Xk+1|k) =

[
arctan

(
∆y

∆x

)
, arctan

(
∆z

dxyk

)]T
(20g)

where Fk is the state transform matrix

Fk =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

 ,

h(·) is the nonlinear measurement function, Hk+1|k is the Jacobian
of h(Xk+1|k), and Pk|k is the Kalman covariance matrix which can
be used to evaluate the estimation performance. We use T to denote
the constant time interval between measurements. The matrix Rk

is the angle measurement noise covariance which is impacted by the
target range [17]:

Rk = diag[σ2
ud
γ
k , σ

2
ud
γ
k ] (21)

where σu means the unit distance squared error and γ is the power
loss exponent. Here because we assume σθ = σφ, the unit squared
errors are the same for θk and φk.

Assuming N sensors in the target localization system, the es-
timator will process sensor measurements one-by-one starting from
the first sensor.

4.2. Numerical examples

We simulate a multi-sensor AOA target localization scenario with
a stationary target located at [1000, 1000, 1000]m using the target
location estimator in the previous subsection. The initial parame-
ters of the EKF are X0|0 = [1200, 0, 800, 0, 1400, 0]T and P0|0 =

diag[1002, 0, 1002, 0, 1002, 0]. Besides, γ = 0.2, σu = 1 degree
and T = 2 seconds. To evaluate the estimation performance, the
mean squared error (MSE) is calculated by using the trace of the
covariance matrix Pk+1|k+1 in (20).

Fig. 2(a) shows 100 sensors deployed with the same angular
spacing and distance from the target but at different heights giving
different φk. Actually, all the sensors are on the surface of a sphere
forming different circles at different heights. Figs. 2(b) and (c) show
the comparison of the MSE corresponding to different groups of
sensors with diverse elevation angles. From Figs. 2(b) and (c) we
can see that sensors with φk = 42.2869o obtain the smallest MSE
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when all the sensor measurements have been processed. The sensors
with φk = 42.2869o satisfy the optimal deployment requirements
in (18). Also the evolutions of MSE show a decreasing tendency
as more measurements are used for estimation. The final MSE val-
ues in Table 1 also confirm the proposed optimal sensor deployment
criterion.

Fig. 3 provides a comparison by using different sensor groups
with different distances from the target and same θk distribution
with all the elevation angles equal to 42.2869o. A smaller MSE
is achieved when the sensors are all located closer to the target as
shown in Fig. 3(b). The final MSE values are 2.83, 7.34, 15.66 and
27.90 for 260m, 440m, 620m and 800m, respectively.

Finally we change the number of sensors with all the elevation
angles equal to 42.2869o. Figs. 4(a) and (b) show the sensor dis-
tribution and comparison of MSEs, respectively. We observe that a
smaller MSE is achieved when more sensors are used. In Fig. 4(b)
the final MSEs are 27.90, 47.65 and 152.30 for 100, 60 and 20
sensors, respectively.
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Fig. 2: (a) 100 sensors with different elevation angles but same
distance. (b) Evolution of MSE. (c) Final MSE.

Table 1. Comparison of different elevation angles
Amount of sensors Distance(m) φ Final MSE

100 800 0o 36.94
100 800 15o 34.97
100 800 30o 30.05
100 800 40o 28.04
100 800 42.29o 27.90
100 800 45o 27.93
100 800 60o 35.27
100 800 75o 126.70
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Fig. 3: (a) 100 sensors deployed with same elevation angle but
different distances. (b) Evolution of MSE.
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Fig. 4: (a) Different numbers of sensors deployed with same el-
evation angle and distance. (b) Evolution of MSE.

5. CONCLUSION

In this paper we have investigated optimal sensor placement strate-
gies for 3D AOA target localization when all sensors have the same
absolute elevation angle from the target. A novel and simple opti-
mal sensor deployment criterion has been proposed based on mini-
mizing the trace of CRLB (the A-optimality criterion). We showed
that sensor elevation angles of±42.2869o with twice of azimuth an-
gles uniformly spaced gives an optimum geometry when the target is
equidistant from the sensors and angle noise is i.i.d. The sign ambi-
guity allows for a multitude of optimal geometries. The effectiveness
of the criterion has been verified by simulation examples utilizing
an extended Kalman filter location estimator. The future work will
consider 3D localization scenarios when sensor placed in different
heights with different noise variances and nonuniform target range.
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