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ABSTRACT
In practical target tracking problems, the target detection perfor-
mance of the sensors may be unknown and may change rapidly
with time. In this work we develop a target tracking procedure
able to adapt and react to time-varying changes of the detection
capability for a network of sensors. The proposed tracking strat-
egy is based on a Bayesian framework, in which the dynamic target
state is augmented to include the sensor detection probabilities. The
method is validated using computer simulations and real-world ex-
periments conducted by the NATO Science and Technology Organi-
zation (STO) - Centre for Maritime Research and Experimentation
(CMRE).

Index Terms— Multiple sensors, real-world data, Bayesian tar-
get tracking, particle filter, time-varying performance.

1. MOTIVATION AND RELATED WORK

Multi-sensor target tracking is a challenging problem which involves
data fusion of measurements from multiple sensors to perform joint
detection and estimation of a moving object [1]. Measurements are
usually subject to noise, missed detections, and false alarms. To cope
with such non-idealities in the sensor model, the majority of target
tracking algorithms assume the parameters which describe the sta-
tistical behaviour of the collected returns are known. However, in
real-world applications these parameters may exhibit marked spatio-
temporal variations, and this will have a strong effect on the capabil-
ity of the tracking algorithms.

A typical scenario is that of manoeuvring targets in which the
behaviour of a target cannot be characterized at all times by a sin-
gle dynamic model and a solution should estimate on-line the proper
dynamics assumed to model the target at the current time. The usual
mechanism for this is often the interacting multiple model (IMM),
see e.g. [2]. In several practical applications, a similar phenomenon
can be observed for the performance of the sensors themselves, as
opposed to the target dynamics. Now, in filtering problems the task
of detecting – and sequestering – faulty sensors has been studied, see
e.g. [3]; however, in target tracking problems, even if the sensor is
working correctly, its capability of observing a target can be affected
by several factors, often difficult to characterize and model properly.
Consider, for example, the degradation of detection capability when
the target aspect is not favourable in terms of geometry with respect
to the sensor, or when the signal-to-noise ratio (SNR) is completely
unknown, see e.g. [4]. Another example is interference in backscat-
tered power due to the Bragg effect in HF surface wave radars [5].
In underwater sonar systems, target detections are influenced by sev-
eral environmental effects – for instance sound propagation – which

have a strong dependence on unknown parameters (e.g. temperature,
salinity, etc.) [6] that may change rapidly in time [7].

While a broad part of target tracking literature considers the sen-
sor performance to be a given, e.g. see [8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18], and consequently the algorithm parameters perfectly
matched to truth, only few recent papers focus on the problem of a
mismatch of the sensor parameters, see [7, 4, 19, 20, 21].

The key aspect of this work is that the sensor detection capa-
bility of a target is not only unknown and spatially dependent, but
that it may change rapidly in time. A target tracking procedure will
be developed to adapt to the changes in the sensor detection capa-
bility. In particular, a full Bayesian framework is derived to model
the behaviour of a network of sensors in which each sensor has its
own time-varying detection capability. The dynamic target state is
augmented to add the detection probabilities of each sensor in the
network, and the dynamics of this detection probability are modeled
as a time-varying Markov process.

This proposed method is validated using both computer experi-
ments and real-world data collected during the CMRE HF-radar ex-
periment, which took place between May and December 2009 on the
Ligurian coast of the Mediterranean Sea, see more details in [5].

2. PROBLEM FORMALIZATION

Consider a system consisting of a network of Ns sensors, whose
aim is to monitor a surveillance region. In particular, the aim is
to detect target presence/absence and, in the case of presence, to
track the target state. Without loss of generality we consider a two-
dimensional surveillance region with area V . At time scan k the
target of interest can be present or absent. When the target is present,
its state is xk = [px

k, ṗx
k, py

k, ṗy
k]T , where px

k and py
k are the position

coordinates and ṗx
k and ṗy

k are the velocities in the two dimensions.
For ease of notation, we also define the set Xk, where Xk = ∅
when the target is absent, otherwise Xk = {xk}. This is a compact
representation of the target presence/absence and the target state. In
the target tracking literature, see e.g. [22], Xk is often referred to as
a Bernoulli Random Finite Set (RFS) [9, 12, 15, 16, 17]. The time
evolution of Xk is ruled by the distribution

φX (Xk|Xk−1) =8>>><>>>:
1− pb, Xk = ∅, Xk−1 = ∅,
pb fb (xk) , Xk = {xk} , Xk−1 = ∅,
1− ps, Xk = ∅, Xk−1 = {xk−1} ,

ps f (xk|xk−1) , Xk = {xk} , Xk−1 = {xk−1} ,

(1)
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where pb and fb (x) are respectively the target birth probabil-
ity and the target birth distribution, while ps and f (xk|xk−1)
are respectively the target survival probability and the target state
transition distribution. The latter is often given by the relation
xk = Fk (xk−1, vk), where Fk is the state transition function (in
general non-linear) and vk is the process noise, often assumed as a
sequence of independent and identically distributed (i.i.d.) random
variables.

2.1. Measurement origin uncertainty

This section describes the measurement origin uncertainty (MOU)
model, widely used in the tracking literature to describe missed tar-
get detections and clutter [1].

At time scan k a sensor s = 1, 2, . . . , Ns can detect a target
with a probability of detection, denoted by ps

k. This probability is
modeled in the proposed approach as time dependent. Furthermore,
spurious measurements (clutter), not originating from, and indepen-
dent from the target, are also observed. The set of measurements
from sensor s at time scan k is defined as

Zs
k =

˘
zs

k,i, i = 1, 2, . . . , ms
k

¯
, (2)

where ms
k is the total number of measurements from sensor s at time

scan k.
If the target is present at time scan k, then the target-originated

measurement of the sensor s is given by

zs
k = hs (xk, ws

k) , (3)

where hs is the measurement function and ws
k is an i.i.d. measure-

ment noise sequence. If the target is detected by the sensor, then
zs

k ∈ Zs
k .

Since the sensors are conditionally independent given the target
state, the likelihood of the measurements is [18]

P (Zk|Xk, pk) =

NsY
s=1

P (Zs
k|Xk, ps

k) , (4)

where Zk
def
=

˘
Z1

k , . . . , ZNs
k

¯
and pk

def
=

ˆ
p1

k, . . . , pNs
k

˜T
. The

likelihood for the sensor s, when the target is absent, is given only
by clutter data

P (Zs
k|∅, ps

k) = P (Zs
k|∅) = φs

C (Zs
k) , (5)

φs
C (Zs

k) =

8<:ms
k!µ (ms

k; λs)
Q

z∈Zs
k

cs(z), ms
k > 0,

µ (0; λs) , ms
k = 0,

where µ (m; λs) and λs are respectively the distribution and the av-
erage number of clutter elements, while cs(z) is the PDF of a clutter
element. Often, µ (m; λs) is assumed to be Poisson and cs(z) uni-
form [18, 6].

It is possible to show that the likelihood for the sensor s, when
the target is present, is given by

P (Zs
k|{xk}, ps

k) = (1− ps
k) φs

C (Zs
k)+

+ ps
k

X
z∈Zs

k

f (z|xk) φs
C (Zs

k\z) (6)

It is worth noting that when ps
k = 0 (target present but not observ-

able), the likelihoods (5) and (6) coincide and it is not possible to

distinguish statistically between the case of target presence and ab-
sence1. Consequently, it is assumed that ps

k cannot have values be-
low a given threshold ps

min > 0.

Algorithm 1 Adaptive Tracker using particle filtering.
IMPORTANCE SAMPLING
Draw xi

k ∼ f
“
xk|xi

k−1

”
, ∀i = 1, . . . , Np;

Draw pi
k ∼ fp

“
pk|pi

k−1

”
, ∀i = 1, . . . , Np;

for s = 1 to N do
Draw Nn new samples xi

k from U
“
x; zs

k,i

”
and pi

k from U (p) , ∀i = 1, . . . ,
˛̨
Zs

k

˛̨
;

end for

UPDATE
for i = 1 to Np + Nn NZk

do

Xi
k =

˘`
xi

k, pi
k

´¯
, wi

k = L
`
Zk|Xi

k

´ φX

“
Xi

k|X
i
k−1

”
q

“
Xi

k
|Xi

k−1,Zk

” wi
k−1;

end for
w∅

k = L (Zk|Xk = ∅)
h
(1 − pb) w∅

k−1 + (1 − ps)
“
1 − w∅

k−1

”i
;

Drop the particles with the lowest Nn NZk
weights;

NORMALIZATION

wt = w∅
k +

NpP
j=1

wi
k; {Total weight}

w∅
k =

w∅k
wt

; wi
k =

wi
k

wt
, ∀i = 1, . . . , Np;

RESAMPLING

Neff =

 
NpP
j=1

wi
k
2

!−1

; {Effective sample size}

if Neff < NpTd then
resampling;

end if

3. ADAPTIVE TRACKER

In real-world applications, the detection performance of a sensor ps
k

is usually time-varying and spatially-varying, because it depends on
environmental conditions, aspect, interference, etc. (see e.g. [7, 5,
6]). Now, it is noted that the likelihood (6) is strongly dependent
on the sensor detection probabilities, and, consequently, a sequential
Bayesian procedure is proposed in which the detection probabilities
are included in the dynamic system state. The state at time k is then
redefined as Xk = {(xk, pk)}, when the target is present, while it
remains Xk = ∅, when the target it absent. The posterior distribu-
tion given all the measurements up to time scan k is given by

P (Xk|Z1:k) =
L (Zk|Xk)P (Xk|Z1:k−1)

P (Zk|Z1:k−1)
, (7)

where Z1:k
def
= {Z1, . . . , Zk} and L (Zk|Xk) is given by eq. (4)-

(5)-(6)

L (Zk|∅) =

NsY
s=1

P (Zs
k|∅) , (8)

L (Zk| {(xk, pk)}) =

NsY
s=1

P (Zs
k| {xk} , pk) . (9)

1This work considers the case of target not present and target not observ-
able to be the same case.
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(a) HFSW radar tracks and ground-truth (AIS).
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(b) Time-varying detection probability profile.

Fig. 1. Comparison between the adaptive and non-adaptive tracker
using the dataset of two HFSW radar systems (WERA). Panel (a)
presents the trajectories, when the target is declared as present, and
the ground-truth given by the AIS messages. Panel (b) presents the
value of the detection probability, constant and fixed to 0.9 for the
non-adaptive tracker, while for the adaptive tracker the mode of the
posterior distribution of the detection probability for the two sensors,
s = 1, 2, is shown.

The prediction term can be written as

P (Xk|Z1:k−1) = φX(Xk|∅)P (∅|Z1:k−1)+

+

ZZ
φX (Xk| {(x, p)})P ({(x, p)} |Z1:k−1) dxdp,

the RFS transition distribution for the augmented state is indicated
with φX (Xk|Xk−1). Note that this distribution has the same
structure of eq. (1). There are two functions to be defined: the
birth distribution fb (xk, pk); and the state transition distribution
fx,p (xk, pk|xk−1, pk−1). This latter can be recast as

fx,p (xk, pk|xk−1, pk−1) = f (xk|xk−1) fp (pk|pk−1, xk) ,

where fp (pk|pk−1, xk) is the detection probability transition distri-
bution, formally dependent from the target state (e.g. the geometry
target-sensor). Assuming that the sensors are conditionally indepen-
dent, the detection probability transition distribution is given by

fp(pk|pk−1, xk) =

NsY
s=1

fs
p (ps

k|ps
k−1, xk), (10)
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(a) Tracks generated using simulated data.
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(b) Time-varying detection probability profile.

Fig. 2. Comparison between the adaptive and non-adaptive tracker
using simulated data. In panel (a) the trajectories, when the target
is declared as present, are reported. Panel (b) presents the value
of the detection probability, constant and fixed to 0.9, for the non-
adaptive tracker, while for the adaptive tracker we report the mode
of the posterior distribution of the detection probability for the two
sensors, s = 1, 2. An abrupt change in the true detection probability
is simulated at the time scan k = 30.

where each fs
p (ps

k|ps
k−1, xk) is the transition distribution of the cor-

responding ps
k of the sensor s.

3.1. Particle filter implementation

Since a closed form for (7) is hard (or even impossible) to derive,
a numerical implementation of the filter based on the Sequential
Monte Carlo methods [23] applied to RFS [24] is employed. The
posterior distribution at time scan k (7) is represented by

P̂ (Xk|Z1:k) =

8><>:
w∅

k, Xk = ∅,
NpP
i=1

wi
kδxi

k
,pi

k
(x, p) , Xk = {(x, p)} ,

(11)

where w∅
k is the weight approximating P (Xk = ∅|Z1:k),

`
xi

k, pi
k

´
is the i-th sample of the augmented system state, wi

k is the i-th
weight approximatingP

`
Xk =

˘`
xi

k, pi
k

´¯
|Z1:k

´
, Np is the num-

ber of particles.
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Algorithm 1 presents the pseudo-code of the particle filter im-
plementation for the augmented sequential Bayesian filter, referred
as the adaptive tracker. Note that the resampling algorithm is stan-
dard and given in [23].

The initial samples xi
0 are uniformly drawn in the surveillance

area for the positional coordinates and in [−vmax, vmax] for the
speed coordinates, while the initial samples pi

0 are uniformly drawn
in Ω1 × · · · × ΩNs , where Ωs is the support of the detection proba-
bility distribution. For instance, assuming a continuous distribution
the support is defined as Ωs = [ps

min, 1]. The initial weights wi
0

are all initialized to (2Np)−1, while w∅
0 = 0.5. In the importance

sampling step of the filter, two kinds of importance sampling distri-
butions are used. The first one is the augmented system state tran-
sition distribution and is used to predict the new samples

`
xi

k, pi
k

´
,

∀i = 1, . . . , Np, from the Np samples at the previous step. The sec-
ond one is constructed on the basis of the measurements Zk and can
be interpreted as the target birth distribution. For each measurement
z ∈ Zs

k , ∀s, Nn particles
`
xi

k, pi
k

´
are sampled, where xi

k is drawn
from U (x; z), which is the uniform distribution in [−vmax, vmax]
for the speed coordinates and centered in z with a given width for
the position coordinates, and pi

k is drawn from U (p), which is a
uniform distribution in Ω1 × · · · × ΩNs . The total number of new
particles is NnNZk , where NZk =

PNs
s=1 |Z

s
k|.

4. EXPERIMENTAL RESULTS

This section reports the results of the adaptive tracker, using both
computer simulated experiments and real-world data collected dur-
ing the CMRE HF-radar experiment, see details in [5]. Two Wellen
radar (WERA) systems were deployed on the Italian coast of the
Ligurian Sea, one on Palmaria island near La Spezia (44◦ 2′ 30′′

N, 9◦ 50′ 36′′ E) and the other at San Rossore Park near Pisa (43◦

40′ 53′′ N, 10◦ 16′ 52′′ E). The target state is defined in Cartesian
coordinates, with a fixed origin located at the Palmaria radar site.

Consider the real track of a vessel sailing North-West, as re-
ported by the data transmitted by its Automatic Identification Sys-
tem (AIS) transponder. The AIS track positions, based on GPS, are
referred to here as the ground-truth, see also the discussion in [5].
Figure 1(a) reports the tracks generated by the proposed adaptive
tracking procedure and the non-adaptive one with fixed detection
probabilities for both the sensors. The parameters of the algorithms
are reported in Tab. 1. Note that all of the parameters of each of
the algorithms are identical, including the number of particles, even
though state augmentation should require, in theory, a larger num-
ber of particles. The only difference is in the use of the detection
probability (fixed for the non-adaptive tracker).

The presence or absence of the target at each frame is decided
based on the value of the marginal posterior probability P (∅|Z1:k),
and if, for instance, this probability exceeds a given threshold then
the target absence is declared. In the scenario reported in Figure 1 it
is easy to verify that the target trajectory is completely reconstructed
by the adaptive tracker while the non-adaptive tracker exhibits some
“gaps” in the estimated track. This phenomenon seems to be caused
by abrupt decreases of the detection probability in one (or both) of
the two radars with respect to the nominal values, these calibrated
and fixed to 0.9 for the non-adaptive tracker. Calibrating the values
for a non-adaptive tracker is often an ad-hoc process, or possibly as
a calibration of static parameters [5]. It is worthwhile to note that
the adaptive tracker has the ability to follow these apparent oscil-
lations in detection probability, see Figure 1(b), resulting in better
track hold. For the sake of further clarity, this phenomenon is also
reconstructed using synthetic data.

Par. Simulation HFSW Radar Specification
T 40 s 33.28 s Time scan
σv 5 10−3 m/s2 5 10−3 m/s2 Process noise st. dev.
σr 75 m 75 m Range st. dev.
σb 1◦ 1◦ Bearing st. dev.

λ/V 1.2 10−8 m−2 2 10−9 m−2 Clutter density
Np 5 104 5 104 Number of particles
pb 10−2 10−4 Birth probability
ps 1− 10−3 1− 10−4 Survival probability
Ns 2 2 Number of sensors
Nn 250 250 Particles per meas.
Td 0.5 0.5 Degeneracy threshold

Table 1. Parameter values used in in the algorithm for simulated and
real radar data.

Consider the scenario reported in Figure 2, in which the target is
sailing North-West. The data are generated using the MOU model,
described in Sec. 2.1 and with the parameters reported in Tab. 1, with
the true value of the detection probability for both the sensors fixed
at 0.9 in first 30 scans followed by an abrupt decrease to 0.3. This
simulates such phenomena as unfavorable propagation, interference
or a change in the target aspect geometry – all commonly observed
in target tracking applications, as discussed.

In the simulation, the non-adaptive tracker uses a detection prob-
ability fixed at 0.9 for both the sensors. It is easy to verify from Fig-
ure 2(a) that after 30 scans the non-adaptive tracker fails to maintain
hold of the target track. The adaptive tracker, instead, is able to also
track the abrupt change in the detection probability without losing
the target, i.e. correctly declaring that the target is present.

In the two examples presented here one way to evaluate the over-
all detection performance of the trackers is using the time-on-target
(ToT) metric, see e.g. [5]. Another option, not presented here, would
be to compute the OSPA metric [25]. The ToT for the adaptive
tracker is 100%, whereas for the non-adaptive is 60% and 63% for
the HFSW radar dataset and the simulated dataset, respectively.

5. CONCLUSIONS

This paper presented a target tracking procedure, developed for a
network of sensors, which is able to adapt and react to the time-
varying changes of the sensors target detection capability. The pro-
posed tracking strategy is based on a Bayesian framework, and the
implementation of the tracker is based on the particle filtering ap-
proach for the RFS, however, the dynamic target state is augmented
with the addition of sensor detection probabilities.

The method was validated using computer simulations and real-
world experiments, conducted by the NATO Science and Technol-
ogy Organization (STO) - Centre for Maritime Research and Exper-
imentation (CMRE). At the cost of some computational complexity
in the particle update, with no additional cost in number of particles,
it was shown that the ToT metric was greatly improved over the non-
adaptive tracking approach. This shows a significant benefit in the
use of the adaptive tracker achieving a ToT of 100% vice roughly
60% for the non-adaptive tracker.
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