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ABSTRACT

In this paper, broadcast beamforming with relay selection is con-
sidered in wireless relay networks where there is no direct link be-
tween the source and the receivers. A source node transmits com-
mon information to many users employing multiple relays which use
amplify-and-forward relay protocol. The channel state information
is assumed to be available at a single relay to compute the relay
weights and distribute them. Discrete relay weights are used due to
several advantages including decreased overhead for the feedback
channel. Multiple relay selection is employed in order to decrease
network complexity and improve bandwidth efficiency. Nonlinear
joint optimization problem is converted to a liner form and optimum
solution is found by using mixed integer linear programming.

Index Terms— Distributed beamforming, relay selection, dis-
crete beamforming, mixed integer linear programming

1. INTRODUCTION

In this paper, we consider cooperative relaying where single an-
tenna relays work as a distributed beamformer to take advantage
of spatial diversity. Single group multicasting scenario is investi-
gated where a source node transmits common information to mul-
tiple users through a relay network. Both transmitter and receivers
have single antenna. Amplify-and-forward relay protocol is used for
simplicity. Each relay multiplies the received signal by a complex
weight such that quality of service (QoS) constraints are satisfied for
the receivers while minimum total relay power is used.

In [1], distributed beamforming is presented for multi-group
multicasting relay network. In [1], [2] and [3], it is assumed that
the relays can adjust their powers arbitrarily and use continuous
phase and amplitude for their complex weights. However, it is not
practical to consider a continuous range for phase and amplitude due
to limited feedback [4]. Furthermore, discrete beamformer structure
has several advantages [5], [6]. In this paper, we propose discrete
beamforming where the phase and amplitude terms are chosen from
finite discrete sets to increase the network lifetime as well as to ob-
tain optimum solution. Furthermore, broadcast relay beamforming
is extended to include relay selection. In other words, the best relays
of the network are selected by minimizing total power while QoS
constraints are satisfied at the receivers. Relay selection is important
to decrease network complexity, overhead and improve bandwidth
efficiency [4], [7], [8]. Single relay selection is considered fre-
quently in the literature [9], [10] but it may not be suitable for the
multiuser case. While relay selection is used in different scenarios,
it is not employed for distributed multicast beamforming. In this
paper, relay selection for single group multicasting is considered by
using discrete beamforming structure. Joint optimization problem is
solved optimally by converting the problem into a linear form.

2. SYSTEM MODEL
Consider a single group multicasting (broadcasting) wireless relay
network where a source node transmits a broadcast signal to N des-
tination nodes through M relays. All nodes in this network are
equipped with a single antenna. It is assumed that there is no direct
link between the source and destination nodes due to path losses.
We consider the two-hop data transmission. In the first phase of
the transmission, the transmitter node broadcasts its signal to the re-
lays and in the second phase, all relays simultaneously transmit to
the destination nodes. Amplify-and-forward relay protocol is used
where the relay forwards an amplified and phase-adjusted version of
its received signal to the destination nodes. The received relay signal
is r = fs+nr , where s is the information symbol transmitted by the
source node, f = [ f1 f2 ... fM ]T , fi is the complex channel gain
between the source node and the ith relay, nr = [ nr1 n

r
2 ... n

r
M ]T is

the relay noise vector and r = [ r1 r2 ...rM ]T , ri is the received sig-
nal at the ith relay. The ith relay multiplies its received signal, ri, by
a complex weight w?i and transmits the resulting signal, ti = w?i ri,
to the destination nodes. The transmitted signal from the relays is
given as, t = WHr where t = [ t1 t2 ... tM ]T and W is a diag-
onal matrix whose elements are complex conjugates of the complex
weights, i.e., W = diag{w1, w2, ..., wM}. The received signal at
the kth receiver is, yk = gTk t + ndk = gTk (WHfs+ WHnr) + ndk
where gk = [ gk,1 gk,2 ... gk,M ]T and gk,i denotes the complex
channel gain between ith relay and kth destination. ndk is the noise
at the kth receiver. Defining Gk = diag{gk,1, gk,2, ..., gk,M} and
w = [ w1 w2 ... wM ]T , the received signal can be written as
yk = wHGkfs+wHGkn

r+ndk. It is assumed that the information
symbol s, the relay and the receiver noises are mutually uncorrelated
in accordance with [1], [2] and [3]. Furthermore, the instantaneous
channels are assumed to be known at the relays [1], [3]. In this pa-
per, relay beamformer is designed by using QoS approach [1], [2].
Hence, it is desired to minimize the total power transmitted from the
relays by ensuring that signal-to-noise ratio (SNR) constraints at the
receivers are satisfied. The SNR of the kth receiver is given as,

SNRk =
E{|wHGkfs|2}

E{|wHGknr + ndk|2}
(1)

where E{|wHGkfs|2} = Psw
HGkff

HGH
k w and E{|wHGkn

r+
ndk|2} = σ2

rw
HGkG

H
k w + σ2

d,k assuming that the channels are
known in accordance with [1]. Here, the relay noise is assumed to
be spatially white without loss of generality. Ps, σ2

r and σ2
d,k denote

the source power, the variance of the relay noise and the noise of the
kth receiver, respectively. The total transmitted relay power can be
written as,

PT =

M∑
i=1

E{|ti|2} =

M∑
i=1

|wi|2E{|ri|2} = wHDw (2)
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where D is the diagonal matrix whose elements are E{|ri|2}, i.e.,
D = diag{E{|r1|2}, ...,E{|rM |2}}. E{|ri|2} = Ps|fi|2 + σ2

r .
The optimization problem to minimize the total transmitted relay
power subject to user SNR constraints is,

min
w∈CM

wHDw (3.a)

s.t. wHTkw ≥ γkσ2
d,k, k = 1, 2, ..., N (3.b)

|wi|2Di,i ≤ pi, i = 1, 2, ...,M (3.c)

where Tk = PsGkff
HGH

k − γkσ2
rGkG

H
k and γk is the desired

SNR value at the kth receiver. Di,i shows the ith diagonal element
of D. (3.c) is used to keep the individual relay power below a thresh-
old, i.e., pi. The fact that the relays may not want to use too much
power due to their limited battery lifetime motivates us to include the
individual power constraints in (3.c) to the original QoS relay beam-
forming problem [1]. The problem in (3) is not convex and there are
efficient algorithms to find suboptimal solutions to this problem [1],
[2], [3]. All these previous works cannot guarantee optimum solu-
tion and produce continuous beamformer weights. However, con-
tinuous power adjustment may not be practical [4]. In this paper, a
discrete version of the problem in (3) is proposed by embedding the
relay selection. In this case, at most L out of M relays are selected
to assist transmission. The discrete QoS relay beamforming problem
with relay selection can be written as,

min
ψi,αi

wHDw (4.a)

s.t. wHTkw ≥ γkσ2
d,k, k = 1, ..., N (4.b)

ψi ∈ {0,∆θ, 2∆θ, ..., (2n − 1)∆θ}, ∆θ =
2π

2n
(4.c)

αi ∈ { 0,∆i, 2∆i, ..., (2
m − 1)∆i}, ∆i =

√
pi

2m − 1
(4.d)

wi =
αi√
Di,i

ejψi i = 1, ...,M, (4.e)

M∑
i=1

1r(αi) ≤ L (4.f)

where n andm are the number of bits to represent the discrete phase
and amplitude respectively. ∆θ and ∆i’s are the discrete step sizes
for phase and amplitude respectively. 1r(αi) is the indicator func-
tion determining the relay selection for the ith relay, i.e., 1r(αi) = 1
if αi > 0, otherwise 1r(αi) = 0. Note that (3.c) is satisfied au-
tomatically by (4.e). Using the fact that Tk is a Hermitian sym-
metric matrix and defining βi,p = −ψi + ψp and µi,p = αiαp,
i = 1, 2, ...,M − 1, p = i+ 1, ...,M , the optimization problem can
be written as,

min
ψi,αi,βi,p,µi,p

M∑
i=1

α2
i (5.a)

s.t.

M−1∑
i=1

M∑
p=i+1

2
µi,p√
Di,iDp,p

|Tki,p |(cos(∠Tki,p)cosβi,p

−sin(∠Tki,psinβi,p)

+
M∑
i=1

α2
i

Di,i
Tki,i ≥ γkσ

2
d,k, k = 1, ..., N (5.b)

βi,p = −ψi + ψp (5.c)
µi,p = αiαp, (5.d)

i = 1, 2, ...,M − 1, p = i+ 1, ...,M

(4.c), (4.d), (4.f)

where Tki,p denotes the ith row, pth column element of Tk matrix.
The problem in (5) is not convex and difficult to solve. In the follow-
ing section, additional tools are used to map the same problem into
a linear form in terms of the optimization variables in order to find
an optimum solution.

3. DISCRETE OPTIMIZATION IN LINEAR FORM
The discrete optimization problem given in (5) is composed of non-
linear expressions of optimization variables. In this part, (5.a-d) and
(4.f) are converted into linear expressions of optimization variables.
Note that the formulation in this part is significantly different than
[5], since QoS problem with relay selection is considered.

Let the first and second parts of the left hand side of the in-
equality in (5.b) be represented as A and B respectively, i.e.,
A =

∑M−1

i=1

∑M
p=i+1 Ai,p and B =

∑M

i=1
Bi where Ai,p =

2
µi,p√
Di,iDp,p

|Tki,p |(cos(∠Tki,p)cosβi,p−sin(∠Tki,p)sinβi,p) and

Bi =
α2
i

Di,i
Tki,i . The fact that µi,p and βi,p constitute finite discrete

sets can be used to writeA in terms of some indicator vectors whose
function is to choose the appropriate values from the predefined
discrete sets. Let c and s be composed of all possible cosβi,p and
sinβi,p terms, i.e., c = [ 0 cos(0 ·∆θ) cos(1 ·∆θ) ... cos((2n−1) ·
∆θ)]T and s = [ 0 sin(0 ·∆θ) sin(1 ·∆θ) ... sin((2n−1) ·∆θ)]T .
“0” corresponds to a term related to the relay selection which nul-
lifies the corresponding element in the beamformer weight vector
w. In order to access each term in A, indicator vectors ui,p’s are
defined, whose elements are all zero except one which is a positive
integer. These types of vectors are known as special ordered sets
of type 1 (SOS1) [11]. The index value of the nonzero element
indicates the selected cosine or sine values from c and s respec-
tively and the integer element amplitude at this index is µi,p

∆i∆p
, i.e.,

cTui,p =
µi,p

∆i∆p
cos(βi,p), sTui,p =

µi,p

∆i∆p
sin(βi,p). The above

is true when the ith and pth relays are selected and µi,p is nonzero
in accordance with (5.d). When ith and pth relays are not jointly
selected, µi,p = 0 (5.d) and the first element of ui,p is one in order
to have Ai,p = 0. The first element of ui,p vector, ui,p1 is a binary
variable which is either 0 or 1. A in (5.b) can be expressed as a
linear expression of ui,p’s as,

A =

M−1∑
i=1

M∑
p=i+1

2
∆i∆p√
Di,iDp,p

|Tki,p |(cos(∠Tki,p)cT

−sin(∠Tki,p)sT ) · ui,p (6)

Note that ui,p1 and 1r(µi,p) are the complements of each other as
binary variables described as in Table 1.There is a dependency be-
tween ui,p vectors due to (5.c) and (5.d). The relationship between
ui,p vectors can be established over SOS1 vectors, vi. (2n + 1)× 1
vector, vi, carries the phase and amplitude information of the indi-
vidual elements of the beamformer vector. The first element of ui,p
and vi, namely ui,p1 and vi1 are the relay selection parameters. vi1
is the complement of 1r(αi) as given in Table 1. If the ith relay is
selected, vi1 = 0, the index value of the nonzero element stands for
ψi
∆θ

and the element amplitude is αi
∆i

.

Table 1. The binary relationship between variables
1r(αi) 1r(αp) 1r(µi,p) vi1 vp1 ui,p1 bi,p, ci,p

0 0 0 1 1 1 ≥ 0
0 1 0 1 0 1 ≥ 0
1 0 0 0 1 1 ≥ 0
1 1 1 0 0 0 0
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ui,p and vi are SOS1 vectors carrying phase and amplitude in-
formation. Phase and amplitude information can be separated by
defining SOS1 operators T1, T2 and T3 respectively. T1 generates
the phase coded “binary” SOS1 vectors u′i,p and v′i from ui,p and
vi respectively. T2 and T3 generate v′′i and u′′i,p binary SOS1 vec-
tors respectively. These two vectors have only the coded amplitude
information and are described in the following parts.

The function of T1{.} operator is the normalization, i.e., v′i =
T1{vi} = T1{[ 0 ... αi

∆i
... 0 ]T } = vi∆i

αi
= [ 0 ... 1 ... 0 ]T

and therefore it generates the phase coded vector v′i. T1 operates
similarly on ui,p.

The equation in (5.c) can now be written in terms of new vari-
ables v′i and u′i,p respectively. In order to do this, (5.c) is first nor-
malized with ∆θ = 2π

2n . Let d = [ 0 0 1 2 ... (2n − 1) ]T be known
vector of integers. After normalization, (5.c) can be written as,

dT · u′i,p = dT · (−v′i + v′p) + 2nai,p (7)
βi,p in (5.c) can take values in (−2π, 2π). In order to decrease the
length of ui,p and vi vectors from 2n+1 to (2n + 1), βi,p is consid-
ered in [0, 2π) range. In this case, the left hand side of the equation
(7) is nonnegative. To overcome phase ambiguity problem when
(−ψi + ψp) is negative, binary variable ai,p is used in (7) in order
to have a valid equation for all cases. When there is a 2n difference
between dT · (−v′i + v′p) and dT ·u′i,p (corresponding to 2π phase
difference between −ψi + ψp and βi,p), ai,p becomes 1 to satisfy
the equality in (7). Note that (7) is defined when ith and pth re-
lays are used simultaneously. For the other cases of relay existences,
equation (7) can still be made valid if an additional variable bi,p ≥ 0
is added to the left hand side of equation (7). In this case, the right
hand side of (7) is always nonnegative and dT · u′i,p = 0 requiring
a nonnegative bi,p to satisfy the equality, i.e.,

dT · u′i,p + bi,p = dT · (−v′i + v′p) + ai,p2
n (8)

bi,p is a nonnegative slack variable and it should be zero when both
ith and pth relays are selected as indicated in Table 1. The re-
lation between ui,p1 and bi,p in Table 1 can be established using
Big-M inequality [12], i.e., bi,p + 2n(1 − ui,p1) ≤ 2n. The re-
lation between the relay selection parameters, vi1 , vp1 and ui,p1
in Table 1 can also be expressed as a double sided inequality, i.e.,
−1 ≤ vi1 +vp1−2ui,p1 ≤ 0. (8) is the linear form of the expression
in (5.c) in terms of new variables u′i,p, v′i, ai,p and bi,p respectively.
In the following part, (5.d), B, (5.a) and (4.f) are converted into the
desired form. In this context, multiplication of two variables is con-
verted to addition through a mapping operation. More specifically,
this nonlinear expression of optimization variables is converted to an
addition in terms of new optimization variables.

Let αi and αp be two amplitude values in multiplication, i.e,
αi · αp = µi,p, where αi

∆i
, αp

∆p
and µi,p

∆i∆p
belong to nonnegative in-

tegers, i.e., αi
∆i
,
αp

∆p
,
µi,p

∆i∆p
∈ {0}∪Z+. αi

∆i
and αp

∆p
belong to a finite

discrete set, i.e., αi
∆i
,
αp

∆p
∈ S where S = {0, 1, 2, 3, ..., (2m − 1)}

form bits as can be seen in (4.d). There are 2m+
(

2m

2

)
multiplication

couples since multiplication is commutative. When the multiplica-
tion of αi

∆i
and αp

∆p
in S is considered, the discrete set of couples can

be given as, P = {0 · 0, ... 0 · (2m − 1), 1 · 1, ... , 1 · (2m −
1), 2 · 2, 2 · 3, ... , 2 · (2m − 1), ... , (2m − 1) · (2m − 1)}.
Let q be a vector whose elements are unique and ordered values of
the multiplication results corresponding to couples in P , i.e., q =
[ 0 1 2 3 ... (2m−1) · (2m−1) ]T . The values in the discrete set
S should be coded by some gi in order to generate a linear expression
and one-to-one mapping between multiplication and addition. This
can be easily done by using logarithm operation since αi ·αp = µi,p
can be equivalently written as logαi + logαp = logµi,p. Let g be a

vector whose elements are the logarithm of the elements in S except
0, i.e., g = [ 0 g1 g2 ... g2m−1 ]T where gi = logi and “0” corre-
sponds to a term related to the relay selection. In a similar manner,
the logarithm of the values in q except 0 are used to obtain h as
h = [ 0 h1 h2 ...]

T where hi = logqi+1. In order to select or access
each element of g and h, we need to define binary SOS1 vectors v′′i
and u′′i,p from vi and ui,p respectively. This is possible by defining
T2{.} and T3{.} operators. These two operators map a SOS1 vector
into a binary SOS1 vector. Note that these operators generate SOS1
vectors which carry only the amplitude information.
T2{} operates on vi and T3{} operates on ui,p only. T2{vi}

sums the elements of vi except the first element and results a binary
vector of 2m×1 size with a nonzero element index being equal to the
summed value. If vi1 = 1 then v′′i1 = 1 and gT ·v′′i = 0. If ui,p1 =
0, T 3{ui,p} takes the nonzero element value in ui,p and finds its
index value in q. It generates a binary vector whose only nonzero
value is at this index. Otherwise, u′′i,p1 = 1 and hT ·u′′i,p = 0. Now
consider the multiplication, µi,p

∆i∆p
= αi

∆i
· αp

∆p
which is equivalent to

log
µi,p

∆i∆p
= log αi

∆i
+ log

αp

∆p
. This equation can be written in terms

of known vectors, g, h, and binary SOS1 vectors v′′i and u′′i,p as,
hT · u′′i,p = gT · (v′′i + v′′p ) (9)

Note that (9) is defined when ith and pth relays are used simultane-
ously. For the other cases of relay selection, equation (9) can still
be made valid if an additional variable ci,p ≥ 0 is added to the left
hand side of equation (9). In this case, the right hand side of (9) is
always nonnegative and hT · u′′i,p = 0 requiring a nonnegative ci,p
to satisfy the equality, i.e.,

hT · u′′i,p + ci,p = gT · (v′′i + v′′p ) (10)
Similar to bi,p, ci,p should satisfy ci,p + 2m(1 − ui,p1) ≤ 2m in
accordance with Table 1. As a result (5.d) is converted into a linear
additive expression in (10) in terms of optimization variables, v′′i ,
u′′i,p and ci,p. B is the sum of weighted squared amplitudes of the
beamformer elements. Define a vector e which is composed of the
squared values in S, i.e., e = [ 02 12 22 ... (2m − 1)2 ]T . Using e,
B can be written as,

B =

M∑
i=1

∆2
i

Tki,i
Di,i

eT · v′′i (11)

Similarly (5.a) can be expressed as,
M∑
i=1

∆2
i e
T · v′′i (12)

(4.f) can also be written using binary variables vi1 as,
M∑
i=1

(1− vi1) ≤ L (13)

Now the expressions in (5.a-d) and (4.f) are converted to linear ex-
pressions in terms of vi, ui,p, v′i, u

′
i,p, v′′i , u′′i,p, ai,p, bi,p and ci,p in

(12), (6), (11), (8), (10) and (13) respectively. The final optimization
problem is written as,

min
vi,ui,p,v

′
i,u

′
i,p,v

′′
i ,u

′′
i,p,ai,p,bi,p,ci,p

M∑
i=1

∆2
i e
T · v′′i (14.a)

s.t.

M−1∑
i=1

M∑
p=i+1

2
∆i∆p√
Di,iDp,p

|Tki,p |(cos(∠Tki,p)cT

−sin(∠Tki,p)sT ) · ui,p

+
M∑
i=1

∆2
i

Tki,i
Di,i

eT · v′′i ≥ γkσ2
d,k k = 1, ..., N (14.b)
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dT · u′i,p + bi,p = dT · (−v′i + v′p) + ai,p2
n (14.c)

hT · u′′i,p + ci,p = gT · (v′′i + v′′p ) (14.d)
M∑
i=1

(1− vi1) ≤ L (14.e)

ai,p, vi1 , ui,p1 , v
′
it , u

′
i,pt

, v′′it , u
′′
i,pt
∈ {0, 1},

t = 1, ..., (2n + 1) (14.f)

vit , ui,pt ∈ {0} ∪ Z+, t = 2, ..., (2n + 1) (14.g)

vi,ui,p,vi + v′i, ui,p + u′i,p ∈ SOS1 (14.h)

v′i, u′i,p, v′′i , u′′i,p ∈ SOS1b (14.i)

[ 0 1 1 ... 1 ]vi = pTv′′i (14.j)

[ 0 1 1 ... 1 ]ui,p = qTu′′i,p (14.k)
bi,p ≥ 0, bi,p + 2n(1− ui,p1) ≤ 2n (14.l)
ci,p ≥ 0, ci,p + 2m(1− ui,p1) ≤ 2m (14.m)
−1 ≤ vi1 + vp1 − 2ui,p1 ≤ 0 (14.n)

All of the variables in these expressions except bi,p and ci,p are
integer variables. Furthermore v′i, v′′i , u′i,p and u′′i,p are binary
SOS1 (SOS1b) vectors and ai,p’s are binary variables. The expres-
sions in (14.h-k) are used to implement T1, T2 and T3 operators
[5], [6] where p = [ 0 1 ... (2m − 1) ]T . Therefore the prob-
lem can be solved using mixed integer linear programming with
branch and cut procedure which is known to return the global op-
timum [13], [14], [15], [16]. Once the solution for vi’s are found,
the phase angles and the amplitudes of the beamformer vector are
obtained as, ψi = fTψ v′i, αi = ∆i√

Di,i
fTα vi, i = 1, ...,M where

fψ = [ 0 0 ∆θ ... (2n − 1)∆θ ]T and fα = [ 0 1 1 ... 1 ]T respec-
tively.

4. SIMULATION RESULTS
The evaluation of the proposed method is performed for flat-fading
Rayleigh channels with unit variance. The source power, relay and
receiver noise variances are selected as, Ps = 10 W, σ2

r = 0.1
and σ2

d,k = 0.1 respectively. We assume equal SNR thresholds at
the receivers. Maximum relay power for each relay is the same and
selected as pi = 2 W. There are N = 12 receivers.

In Fig. 1, total power transmitted from the relays is plotted for
different number of bits for phase (n) and amplitude (m). In this ex-
periment, there is no relay selection andM = 4 relays are used. The
average of 100 random channel trials at each point is presented. It is
shown that very good user SNR levels are achieved by using reason-
ably low total relay power even when there are less relays compared
to the number of users. As the number of bits increases, transmitted
power decreases and the effect of amplitude becomes more signifi-
cant.

In the second experiment, total power transmitted from the re-
lays is considered for the relay selection as well as fixed relay case.
Different number of relays are selected from M = 6 relays, i.e.
L = 2, 3, 4. Fig. 2 shows the total power transmitted from the re-
lays for γk ranging from 0 to 10 dB. n = 3 and m = 3 bits are
used for phase and amplitude respectively. In this figure, it is shown
that the best L out of M relay selection decreases the total relay
power significantly. In fact, more than 2 dB improvement in power
is possible for L = 2 and L = 3 compared to M = L fixed relays.

Table 2 shows the computational complexity of the brute force
and the proposed method where the average of 100 trials are re-
ported. As it is seen from this table, the proposed optimum method
has significantly lower complexity thanks to the efficiency of the

mixed integer linear programming with branch and cut technique.
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Fig. 1. Total relay power versus user SNR values for different num-
ber of bits for phase and amplitude.
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Fig. 2. Total relay power versus user SNR values for different relay
selection and fixed cases.

Table 2. Computational time of the proposed method (PM) and brute
force search (BFS)
M = 6, m = 3 γ = 0 dB γ = 4 dB γ = 8 dB
n = 2, L = 3 PM 1.45 s 4.84 s 7.35 s

BFS 11 s 10 s 10 s
n = 2, L = 4 PM 4.20 s 15.41 s 46.25 s

BFS 280 s 275 s 273 s
n = 3, L = 3 PM 3.33 s 8.76 s 12.96 s

BFS 44 s 44 s 44 s
n = 3, L = 4 PM 21.6 s 51.03 s 138.24 s

BFS 2215 s 2231 s 2198 s

5. CONCLUSION
Single group multicast relay beamformer design with multiple relay
selection is considered for amplify-and-forward relaying protocol.
The phase and amplitude coefficients of the relay weights are cho-
sen from discrete sets. The joint nonlinear problem is converted to
a linear form suitable for mixed integer linear programming. The
optimum solution is obtained effectively and it is shown that the
proposed method performs significantly better compared to the op-
timum beamformer for the fixed relay. Computational complexity is
much better than the exhaustive search thanks to the efficiency of the
branch and cut algorithm.
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rial Optimization, M. Jünger, D. Naddef Ed. Berlin, Germany:
Springer-Verlag, 2001.

[15] R. Horst and H. Tuy “Global Optimization: Deterministic Ap-
proaches.” Berlin, Germany: Springer-Verlag, 1996.

[16] D. Wei and A. V. Oppenheim, “A branch-and-bound algorithm
for quadratically-constrained sparse filter design,” IEEE Trans.
Signal Processing, vol. 61, no. 4, pp. 1006-1018, Feb. 2013.

2528


