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ABSTRACT

Optimal beamforming on synthetic noise and interference is
a flexible and intuitive technique for shaping beam patterns.
In this method, suppression of arrivals from undesirable di-
rections is achieved through introduction of synthetic inter-
ferences and optimal beamforming using the resulting noise-
interference covariance matrix. We apply this approach to a
general multiplet line array and test the algorithm on repre-
sentative multi-channel time-series obtained for a quadruplet
line array.

Index Terms— multiplet line arrays, sonar simulation,
optimal beamforming

1. INTRODUCTION

An optimal beamformer provides maximal array gain when
the noise+interference covariance matrix is known or can be
reliably estimated. In many practical situations of sonar signal
processing, optimal beamformers obtained for one type of co-
variances are employed in cases with a rather different noise
and interference structure. One immediate example is the
conventional beamformer, which is an optimal beamformer
obtained for a somewhat contrived case, when there are no
interferences and the noise processes at different receiver el-
ements are statistically identical and independent. We can
adopt a similar approach and consider optimal beamforming
on different forms of synthetic noise and interference in order
to create beam patterns of desirable shapes.

Considering the narrow-band case, let x̃(t) be the com-
plex envelope of the signal x(t) sampled at the receiver ele-
ments of the array (x(t) = Re{x̃(t)eiωt}). There is a range
of cases for which the noise component Rx̃:n of the combined
noise+interference covariance matrix Rx̃:ni = Rx̃:n + Rx̃:i
has an analytic form simple for calculation, isotropic noise is
one example. The interference component Rx̃:i can also be
readily calculated: if there are M independent interferences
arriving from directions described by unit vectors νm (m =

1, . . . , M), then Rx̃:i =
∑M
m=1 2σ

2
i:mv(νm)vH(νm),where

σ2
i:m is the power of the narrow-band interference process m

at the center of the array and v(ν) is the array manifold vector
for the look direction ν and the center frequency ω.

By appropriately selecting {νm; σ2
m}, one can devise co-

variance matrix Rx̃:ni and use it in the optimal beamformer in
order to build beam patterns in which arrivals from undesir-
able directions are suppressed.

In this work we use optimal beamforming on synthetic in-
terferences in order to shape beam patterns for a multiplet line
array. One of the tasks commonly considered in beamforming
of multiplet line arrays is elimination of port/starboard ambi-
guity [1]. Similarly to [1] we employ beamspace processing
[2, 3] in which preliminary beams are obtained by conven-
tionally beamforming line sub-arrays. We focus on an active
narrow-band case.

The derivation of the beamformer is provided in section 2.
In section 3 we describe generation of representative multi-
channel time series for testing the beamformer and discuss
the processing steps and the outputs.

2. DERIVATION OF THE BEAMFORMER

Consider a multiplet line array consisting of K multiplets
each of which comprising of L receiver elements (see Fig. 1).
Such arrays can be viewed as a combination of L line sub-
arrays, so they are also referred to as multi-line arrays [4].

Fig. 1. Schematic of a multiplet line array. The multiplet’s
diameter is assumed to be small compared to the spacing be-
tween them.
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The derivation below is applicable to more general arrays
than shown in Fig. 1. In particular, it covers the case of mildly
twisted and bent multi-line arrays, and, upon minor modifica-
tions, the method can also be used when some of the array
elements are removed.

Multi-channel signals received by array elements can be
represented as a column vector x(t) of real time dependent
functions xs(t), where s is the consecutive number of the re-
ceiver element (s = 1, . . . , K×L). Index s can be referred
to as the global index. The discrete time-series data can be
formed into an N -by-K×L array, where N is the number of
sampling times.

Considering active narrow-band case, let ω be the center
frequency and x̃(t) be the complex envelope of x(t). For look
direction ν, define time delays using the dot product

τs(ν) ≡ (ds · ν)/c (1)

where ds is the radius-vector of array element s and c is the
speed of sound. Let s = µ(k, `) be the global index corre-
sponding to element ` in multiplet k. In our enumeration of
array elements, we have µ(k, `) = L × (k − 1) + `. Ele-
ments µ(k, `) (k = 1, . . . , K) form line sub-array `. Let
vk,`(ν) = eiωτµ(k,`)(ν), then the array manifold vector of sub-
array ` is

v`(ν) ≡

v1,`(ν)...
vK,`(ν)

 (` = 1, . . . , L). (2)

For a given look direction ν0 obtain time-shifted complex en-
velopes

x̃k,`(t) ≡ x̃µ(k,`)(t− τµ(k,`)(ν0)) , (3)

where k = 1, . . . , K and ` = 1, . . . , L, and form vectors

x̃`(t) ≡

 x̃1,`(t)...
x̃K,`(t)

 , ` = 1, . . . , L. (4)

Conventionally beamform each of the sub-arrays and
combine the outputs into a single vector

z̃(t) ≡

vH
1 (ν0)x̃1(t)

...
vH
L(ν0)x̃L(t)

 (5)

The array output is

ỹ(t) = hHz̃(t) . (6)

The associated real signal is y(t) = Re
{
ỹ(t)eiωt

}
. We will

cross-correlate (6) against the complex envelope of the replica
of the transmitted pulse.

The coefficients h used in (6) are obtained by postulating
a special synthetic form of noise and interference and max-
imising the array gain

G ≡ E/Py:ni

E0/σ2
ni
. (7)

Equation (7) uses the following notation.
• E0 is the energy of the echo received at each receiver ele-

ment. For the considered frequencies, we have

E0 ≡
∫ t0+T

t0

[xk,`(t)]
2dt ≈ 1

2

∫ t0+T

t0

|x̃k,`(t)|2dt

where t0 is the time of arrival of the echo at the center
of the array, T is pulse length, and in this calculation we
consider only echo arrivals. In the derivation of the beam-
former we assume single-path straight-line propagation,
so the resulting idealised echo can be described near the
array by a function of the form Q(t − r/c)/r0, where r
is the distance from the target and r0 is the distance be-
tween the target and the center of the array. If Q̃(t) is the
complex envelope of Q(t), we obtain

E0 ≈
1

2r20

∫ T

0

|Q̃(t)|2dt (8)

• σ2
ni is the combined power of the noise and interference

processes at each receiver element – we assume that these
stationary processes are independent, so

σ2
ni = σ2

i + σ2
n , (9)

where σ2
i and σ2

n are the powers of the interference and
noise respectively.
• E is the energy of the echo-only output of the array, i.e.

E ≡
∫ t0+T

t0

[y(t)]2dt ≈ 1

2

∫ t0+T

t0

|ỹ(t)|2dt .

Use (6) and (8) to obtain

E =

[
K2

2r20

∫ T

0

|Q̃(t)|2dt

]
hHu(ν0,ν0)u

H(ν0,ν0)h

= E0K2|hHu0|2 (10)

where

u(νa,νb) ≡
1

K

vH
1 (νa)v1(νb)

...
vH
L(νa)vL(νb)

 (11)

and

u0 ≡ u(ν0,ν0) =

1...
1

 . (12)

• Py:ni is the power of the array output when only noise and
interference are present, i.e. y(t) = yni(t):

Py:ni = E
[
|yni(t)|2

]
=

1

2
hHRz̃:nih, (13)

where Rz̃:ni is the covariance matrix of the associated
z̃(t) (and we also use similar notation Rz̃:n and Rz̃:i
for noise- and interference-only processes). From inde-
pendence of noise and interference processes we obtain
Rz̃:ni = Rz̃:i +Rz̃:n.
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The complex envelope covariance matrix Rz̃:i of an interfer-
ence arriving from direction ν i is (cf. equation (10))

Rz̃:i = 2σ2
i K

2u(ν0,ν i)u
H(ν0,ν i) (14)

Let ñk,`(t) be the reduction of x̃k,`(t) to noise-only compo-
nent. In the development of the beamformer we postulate that
each ñk,`(t) results from a synthetic isotropic noise obtained
as a limiting case of a multitude of independent isotropically
distributed equal interferences arriving at the array. We as-
sume that variations of ñk,`(t) within time intervals of length
maxs(|ds|/c) are insignificant and can be ignored. If ñA(t)
and ñB(t) were obtained for points A and B, then we would
have

E [ñA(t)ñ
∗
B(t)] = 2σ2

nρ(DAB , ω), (15)

where ρ(D,ω) = sinc(Dω/c), DAB is the distance between
the points A and B, and sinc(·) is an unnormalised sinc func-
tion. Assuming that the distance between the multiplets is
large enough (> πc/ω), we can ignore the correlation be-
tween the noise processes at receiver elements of different
multiplets:

E
[
ñk,`(t)ñ

∗
q,p(t)

]
' 0 (k 6= q) . (16)

Because the size of the multiplet is small, the noise correlation
between elements within a multiplet cannot be ignored, so by
(15) we have

E
[
ñk,`(t)ñ

∗
k,p(t)

]
= 2σ2

nρ(d`p, ω), (17)

where d`p is the distance between elements ` and p within a
multiplet. Calculate elements of the covariance matrix Rz̃:n:

[Rz̃:n]`p = E

[
K∑
k=1

v∗k,`(ν0)ñk,`(t)

K∑
q=1

vq,p(ν0)ñ
∗
q,p(t)

]
= 2σ2

nρ(d`p, ω)v
H
` (ν0)vp(ν0) . (18)

Substitute (9), (10) and (13) into (7) to obtain

G = 2K2(σ2
i + σ2

n )
|hHu0|2

hHRz̃:nih
(19)

A standard procedure based on the substitution w = R
1/2
z̃:nih

and application of the Cauchy-Schwarz inequality gives (e.g.
[5], [6, ch.5], or [7, ch.10])

hmax ≡ argmaxG(h) = γR−1
z̃:niu0 ,

where γ is an arbitrary non-zero number which we set to 1.
By (14), Rz̃:ni = Rz̃:ni(ν0,ν i). The obtained beam-

former automatically suppresses arrivals from the direction
ν i. To suppress the ambiguity present in conventionally
beamformed line arrays we select vector ν i by pointing it in
the direction symmetric to ν0 with respect to the array axis:

ν i = ν i(ν0) = ν0 − 2(ν0 · ey)ey , (20)

where ey is the unit vector pointing in the starboard direction
of the array.

Thus, the obtained beamformer coefficients for (6) are

hmax = h(ν0) = R−1
z̃:ni(ν0)u0 (21)

where Rz̃:ni(ν0) = Rz̃:ni(ν0,ν i(ν0)).

3. TESTING THE BEAMFORMER

3.1. Generating representative multi-channel time series

We tested the optimal beamformer using simulated multi-
channel signals generated by the Sonar Simulation Toolset
(SST) [8] software. Artificial time series produced by the
SST have a good degree of realism and statistical accuracy.
The SST is capable of simulating very complex scenarios
which span far beyond the simple single-path straight-line
propagation assumptions used in the derivation of the beam-
former. For our tests we chose a simple case with a nearly
constant ocean depth of approximately 1950 m and a sound
speed profile resulting in surface duct propagation. An omni-
directional transmitter was used with a linear FM sweep with
center frequency 1850 Hz, bandwidth 100 Hz, and source
level 210 dB (re µPa2 at 1 m). The duration of the ping was
0.5 sec and the time interval between the pings was 40 sec.
The receiver constituted a line of 31 quadruplets (L = 4,
K = 31) located 70 m behind the transmitter. The spacing
between multiplets was 0.4 m (0.5 wavelength), and the ra-
dius of each multiplet is 0.05 m (0.0625 wavelength). Both
receiver and transmitter were towed in line at a 50 m depth.
For easier interpretation, the tow ship was nearly stationary
slowly moving to the North. The target commenced at a
range of approximately 11.7 km from the source and 45 de-
grees forward of broadside moving to the North West with
the speed of 5.5 knots (see Fig. 3). The target was modelled
as a single point scatterer with target strength of 10 dB re m2.
Reverberation is due to surface waves from a wind speed of
4.5 m/s. Ambient isotropic noise was included at 40 dB re
µPa2/Hz and constant in the band. Tow ship interference
was modelled as an omni-directional source emitting a broad-
band noise with a spectral level of 126 dB re µPa2/Hz at 1
m in the band. We chose complex envelope representation for
SST’s output, with sample rate 1 kHz and center frequency
1850 Hz.

3.2. Processing steps and outputs

The key processing steps were based on derivation steps of
Section 2.
1. Filter and extract complex envelopes from multi-channel

time series
2. For a given look direction ν0:

(a) Obtain z̃(t) by conventionally beamforming each of
the singlet line arrays comprising the multiplet line ar-
ray (see equation (5)).
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(b) Select σi and σn for the synthetic interference and
noise. Use (21) to obtain h(ν0), then substitute into
(6) and obtain ỹ(t).

(c) Cross-correlate ỹ(t) with the complex envelope of the
replica and take the absolute value.

(d) Normalise the result to suppress the reverberation.
Synthetic interference in Step 2 (b) is used to eliminate the
port/starboard ambiguity present in conventional line arrays.
The synthetic noise is required to regularise the inversion of
Rz̃:ni: since ranku(ν0,ν i) = 1, the covariance matrix Rz̃:ni
becomes singular if σn is zero.
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         OBF, Look Dir. = 34.0473 deg: Normalised Cross−Correlation Magnitude

(a)

5 10 15 20 25 30
0

2

4

6
x 10

10

time (sec)

         OBF, Look Dir. = −34.0473 deg: Normalised Cross−Correlation Magnitude

(b)

Fig. 2. Outputs of the optimal beamformer: normalised cross-
correlation magnitude.

Time series data generated for a quadruplet line array
were used to verify the port/starboard ambiguity elimination
step. The results in Figure 2 demonstrate that the method does
remove the ambiguity: plots in Figure 2 (a) were obtained
for the steering direction pointing at the target, while plots in
Figure 2 (b) were obtained for a steering vector symmetric
with respect to the axis of the array.

Fig. 3. A Plan Position Indicator (PPI) display of 30-ping
beamforming history for a simulated example.

Plots in Figure 2 display two scans for a single ping from a
30-ping simulation. A PPI display of the entire beamforming
history obtained in this simulation is provided in Figure 3.

Results in Fig. 2 and 3 can be further illustrated by exam-
ination of power patterns of the obtained beams. The array
power pattern PP(ν,ν0) is obtained by fixing the steering
direction ν0 and considering the power ratio

PP(ν,ν0) =
Py:i(ν0,ν)

Py:i(ν0,ν0)
=
|hH(ν0)u(ν0,ν)|2

|hH(ν0)u0|2
(22)

for different test directions ν.
Figures 4 (a) and (b) show beam patterns of the optimal

and conventional beamformers obtained for the steering di-
rection considered in Figures 2. The optimal power pattern
in Figure 4 (a) shows that the arrivals from the ambiguous
direction are suppressed.

(a) (b)

Fig. 4. Array power patterns at the center frequency (1850
Hz): (a) optimal beamformer, and (b) conventional beam-
former. The red arrow points in the steering direction, while
the green arrow points in the ambiguous direction.

4. CONCLUSION

In this work we considered application of optimal beam-
forming to active processing of multiplet line arrays. In
our method the beamforming coefficients are obtained using
a covariance matrix corresponding to appropriately chosen
synthetic quasi-interference and isotropic noise. Examination
of array power patterns and processing outputs shows that the
resulting beamformer is free from the port/starboard ambigu-
ity present in the conventionally beamformed line arrays. The
beamformer has been tested on representative multi-channel
time series generated using the Sonar Simulation Toolset
(SST).
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