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ABSTRACT

This paper investigates distributionally robust minimum vari-
ance beamforming under first-order moment uncertainty. In
contrast to deterministic modeling of the array response, our
approach employs a distributional set to describe the uncer-
tainty. The distributional set we introduce consists of two con-
straints: the probability measure constraint and a first-order
moment constraint. The weights are selected to minimize the
combined output power, subject to the modified distortion-
less response constraint that the expected real part of the array
gain exceeds unity for all distributions in the uncertainty set.
We begin our discussion by revealing the intrinsic connection
between the distributionally robust minimum variance beam-
formers (DRMVB) and the robust minimum variance beam-
former (RMVB). Then for the sample space described by a
union of ellipsoids, the DRMVB is reformulated as the op-
timal solution of a semidefinite program (SDP). Finally, we
demonstrate the performance of the DRMVB via several nu-
merical examples.

Index Terms— Minimum variance beamforming, distri-
butionally robust optimization, strong duality, semidefinite
programming

1. INTRODUCTION

The minimum variance beamformer (MVB) [1] is an op-
timal linear processor that maximizes the output signal to
interference-plus-noise ratio (SINR), provided that the sta-
tistical covariance matrix and the array response are known.
However, the statistical covariance matrix is rarely known in
practice, and the use of the sample covariance matrix instead
is known to degrade the performance dramatically, especial-
ly in the case in which the array response is imperfect as
well [2]. One simple approach to improve the robustness of
the MVB is the diagonal loaded (DL) beamformer [3], [4].
Unfortunately, there are two limitations of the DL approach:
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first, it is unclear how to select the loading factor properly;
second, it ignores the knowledge one may have on the uncer-
tainty. To overcome such limitations, several RMVBs have
been derived in [5]–[8].

Inspired by the work [9], this paper investigates distribu-
tionally robust beamforming under first-order moment uncer-
tainty. The DRMVB is derived for the sample space described
by a union of ellipsoids. Simulations show that the DRMVB
under first-order moment uncertainty provides better average
output SINR and power estimate than the RMVB [5].

2. BACKGROUND

Consider an antenna array of N elements. Let a(θ) ∈ CN

be the array response to a plane wave of unit amplitude from
direction θ. Assuming that a desired source s(t) is impinging
on the array from θ, we can write the complex array observa-
tion as

y(t) = s(t)a(θ) + e(t), (1)

where e(t) is an additive term that captures the effect of both
interference and noise. Let y(k) be the sampled array output;
we can express the combined output as

yc(k) = w∗y(k) = s(k)w∗a(θ) +w∗e(k)

k = 1, . . . ,K, (2)

where w ∈ CN is the array weight vector and K is the
number of snapshots. If a(θ) and Ry , E{y(k)y(k)∗} are
known, the beamformer

wopt =
R−1

y a(θ)

a(θ)∗R−1
y a(θ)

. (3)

is the optimal linear combinator that maximizes the output
SINR. In practice, Ry is rarely known, and is instead replaced
by R̂y = 1

K

∑K
k=1 y(k)y(k)

∗, and the solution to (3) using
R̂y is referred to as the MVB, and is given by

wMV =
R̂−1

y a(θ)

a(θ)∗R̂−1
y a(θ)

. (4)
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Unfortunately, the use of R̂y instead of Ry in (3) is known to
dramatically degrade the performance, especially in the case
when the knowledge of a(θ) is imperfect as well [2]. A simple
approach to improve its robustness is the DL beamformer [3]

wDL =
(R̂y + µI)−1a(θ)

a(θ)∗(R̂y + µI)−1a(θ)
. (5)

which amounts to replacing R̂y in (4) by R̂y + µI, where µ
is the loading factor. The DL beamformer (5) is known to
suffer from two limitations. First, it is unclear how to choose
µ properly. Second, the approach ignores the knowledge one
may have on the uncertainty. To avoid the aforementioned
drawbacks of the DL beamformer (5), more theoretically rig-
orous RMVBs have been derived in [5]–[7].

The essence of the RMVB derived in [5] is to model the
uncertainty via a 2N -dimensional real ellipsoid, and to design
the beamformer that minimizes the combined output power
subject to the constraint that the real part of the array gain
exceeds unity for all array responses in the ellipsoid, i.e.,

min
w

w∗R̂yw

s.t. min
a∈E(c,P)

Rew∗a(θ) ≥ 1, (6)

where E(c,P) = {x | (x − c)TP−1(x − c) ≤ 1}. Let P =
AAT , where A ∈ R2N×2N ; then we can express E(c,P)
equivalently as E = {Au+ c | ∥u∥2 ≤ 1}. Introducing

x =

[
Rew
Imw

]
R̂ =

[
ReR̂y −ImR̂y

ImR̂y ReR̂y

]
we can rewrite (6) into the real-valued form:

min
x

xT R̂x

s.t. min
a∈E

xTa ≥ 1. (7)

Applying the Cauchy-Schwartz inequality, we can simplify
(7) as

min
x

xT R̂x

s.t. ∥ATx∥2 ≤ cTx− 1. (8)

As mentioned in [5], the constraint in (8) is always tight for
the optimal weights, and therefore (8) is equivalent to

min
x

xT R̂x

s.t. ∥ATx∥2 = cTx− 1, (9)

which can be solved efficiently by Lagrange multiplier meth-
ods [5].

3. ROBUST MINIMUM VARIANCE BEAMFORMING
UNDER DISTRIBUTIONAL UNCERTAINTY

3.1. Robust Beamforming Problem

Assuming that we have collected some data {ai(θ)}mi=1 from
measuring the array response, we consider the following
beamforming problem

min
w

w∗R̂yw,

s.t. min
Pa∈D(S,â,Σ̂,γ)

Ea{Rew∗a(θ)} ≥ 1. (10)

with D(S, â, Σ̂, γ) ={
Pa ∈ M+

∣∣∣∣∣E{1S(a)} = 1

(E{a} − â)T Σ̂−1(E{a} − â) ≤ γ

}
,

where ai = [Reai(θ)
T , Imai(θ)

T ]T , i = 1, . . . ,m, â =
1
m

∑m
i=1 ai, and Σ̂ = 1

m

∑m
i=1(ai − â)(ai − â)T ; γ > 0

describes the size of E(â, γΣ̂), and M+ denotes the set of
all measures on (R2N ,B). The set B represents the Borel σ-
algebra on R2N . We first transform (10) into the real-valued
form

min
x

xT R̂x,

s.t. min
Pa∈D(S,â,Σ̂,γ)

E{xTa} ≥ 1. (11)

Note that D(S, â, Σ̂, γ) is equivalent to{
Pa ∈ M+

∣∣∣∣∣E{1S(a)} = 1

E{a} ∈ E(â, γΣ̂) ∩ conv{S}

}
. (12)

Now we present the following proposition to reveal the in-
trinsic connection between the RMVB (7) and the DRMVB
(11).

Proposition 1: The distributionally robust beamforming
problem (11) is equivalent to the following robust beamform-
ing problem

min
x

xT R̂x,

s.t. min
a∈E(â,γΣ̂)∩conv{S}

xTa ≥ 1 (13)

Proof. To establish the (11) and (13), we only need to estab-
lish the equivalence of

min
Pa∈D(S,â,Σ̂,γ)

E{xTa} (14)

and

min
a∈E(â,γΣ̂)∩conv{S}

xTa. (15)
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We first assume that Pa ∈ D(S, â, Σ̂, γ), then EPa{a} is fea-
sible in (15), with the same objective function EPa{xTa}.
Conversely, for any given a ∈ E(â, γΣ̂)∩conv{S}, a distri-
bution

∑L
i=1 ηiδsi ∈ D(S, â, Σ̂, γ) can be constructed with

the same objective value xTa, where si ∈ S, ∀i,
∑L

i=1 ηi =
1, and ηi ≥ 0, ∀i. This completes our proof.

In the light of Proposition 1, the feasibility of D(S, â, Σ̂, γ)
can be easily established, i.e., conv{S}∩E(â, γΣ̂) ̸= ∅. We
will focus on the cases where conv{S} ∩ E(â, γΣ̂) ̸= ∅ and
E(â, γΣ̂) ̸⊇ conv{S}.

To tackle (11), we use duality theory [10] to reformulate
the maximization problem in (11). Putting the maximization
problem into the integral form

max
Pa

∫
S
−xTa dPa (16a)

s.t.

∫
S
dPa = 1 (16b)∫

S

[
Σ̂ (a− â)

(a− â)T γ

]
dPa ≽ 0 (16c)

Pa ∈ M+, (16d)

we can derive its dual problem as follows:

min
λ,Z,z,ν

λ+ tr{ZΣ̂} − 2âT z+ γν, (17a)

s.t. − λ+ 2aT z− xTa ≤ 0, ∀a ∈ S, (17b)[
Z z
zT ν

]
≽ 0, (17c)

where λ ∈ R is the dual variable for (16b); Z ∈ R2N×2N ,
z ∈ R2N , and ν ∈ R together are the dual variables for (16c).
Note that (17) can be further simplified by solving analyti-
cally for (Z, ν), while keeping (z, λ) fixed. We consider two
cases of z: either z = 0 or z ̸= 0. We first assume that z = 0,
then ν∗ = 0 and Z∗ = 0 minimize the dual objective function
(17a). If z ̸= 0, it must be true that ν > 0, otherwise, we can
construct a vector

[
zT , g

]T
such that

[
zT ,−g

] [ Z z
zT 0

] [
z
−g

]
= zTZz−2gzT z < 0,

for g > zTZz
2zT z

, which contradicts (17c). Therefore, we have
ν > 0. Applying Schur’s complement, we can rewrite the
constraint (17c) as Z ≽ zzT

ν . Obviously, the dual objective
function (17a) is minimized with

Z∗ =
zzT

ν
. (18)

Substituting (18) into the dual objective function (17a), we
obtain

min
ν>0

1

ν
zT Σ̂z+ γν. (19)

Since (19) is convex in ν, by setting the first-order derivative
of (19) to zero, we immediately obtain

ν∗ =

√
1

γ
zT Σ̂z. (20)

Combining both cases of z, we obtain the optimal Z and
ν given by (18) and (20). Then (17) can be simplified as

min
λ,z

λ+ 2
√
γ∥Σ̂ 1

2 z∥2 − 2âT z

s.t. − λ+ 2aT z− xTa ≤ 0, ∀a ∈ S. (21)

To establish strong duality for the primal-dual pair (16) and
(21), we have the following proposition.

Proposition 2: For γ > 0, strong duality holds for the
primal-dual pair (16) and (21).

Proof. Since â = 1
m

∑m
i=1 ai, where ai ∈ S, ∀i, a probabili-

ty distribution

Pa =
1

m

m∑
i=1

δai (22)

can be constructed to lie in the relative interior of the set
D(S, â, Σ̂, γ). According to the weaker version of Proposi-
tion 3.4 in [10], strong duality holds for the primal-dual pair,
and that if the optimal value of problem (16) is finite, then the
set of optimal solutions of problem (16) is nonempty [9].

3.2. Tractable Beamformer Design

Since strong duality has been established, replacing the max-
imization problem in (11) by (21), we can reformulate (11) as

min
x,λ,z

xT R̂x (23a)

s.t. λ+ 2
√
γ∥Σ̂ 1

2 z∥2 − 2âT z ≤ −1 (23b)

− λ+ 2aT z− xTa ≤ 0, ∀a ∈ S, (23c)

which is a convex programming problem. Nevertheless, prob-
lem (23) becomes tractable only if we choose S properly. In
the following discussion, we will derive the DRMVBs for
S = ∪n

i=1Ei. Suppose that the ellipsoids E1, . . . , En are de-
scribed by the following n convex quadratic inequalities:

aTQia+ 2qT
i a+ ri ≤ 0, i = 1, . . . , n. (24)

If (24) is strictly feasible, then by S-lemma [11], the condition
that −λ+2aT z−xTa ≤ 0, ∀a ∈ ∪n

i=1Ei can be equivalently
expressed as: there exist τ1, . . . , τn such that[

0 ( 12x− z)
( 12x− z)T λ

]
+ τi

[
Qi qi

qT
i ri

]
≽ 0,

i = 1, . . . , n. (25)
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Fig. 1. Comparison of Beampatterns with K = 250, SNR=10
dB, α = 5◦, β = 6◦, p = 0.8, and σ2

p = (0.015)2: a) θ1 = α,
b) θ1 = β.
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Fig. 2. Performance comparison with SNR =10 dB: (a) de-
sired signal power estimate, (b) SINR versus K.
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Fig. 3. Performance comparison with K = 250: (a) desired
signal power estimate, (b) SINR versus SNR.

Then problem (23) can be reformulated as an SDP:

min
t,x,λ,z,τ

t

s.t. ∥R̂ 1
2x∥2 ≤ t

λ+ 2
√
γ∥Σ̂ 1

2 z∥2 − 2âT z ≤ −1

τ1 ≥ 0, . . . , τn ≥ 0[
0 ( 12x− z)

( 12x− z)T λ

]
+ τi

[
Qi qi

qT
i ri

]
≽ 0

i = 1, . . . , n. (26)

4. NUMERICAL RESULTS

We present three numerical examples comparing the perfor-
mance of the MVB, the DL beamformer (5), the RMVB [6],

the RMVB (9), and the DRMVB (26). In all examples below,
we assume a ten-sensor uniform linear array centered at the
origin and spaced 0.4-wavelength apart. Two sources of er-
rors, namely, the sensor position error and the AOA error are
considered. To simulate the sensor position error, the position
of each element is perturbed independently by a zero-mean
Gaussian random vector with variance σ2

pI2×2. The AOA of
the desired source is modeled as a binary random variable θ1
with probability distribution Pr{θ1 = α} = p and Pr{θ1 =
β} = 1 − p, where p > 0. The measurements are generated
in the following manner: first, mAOA = 100 independent ob-
servations of θ1 are collected, and then for each realization of
θ1, mp = 1000 samples are independently generated. Since
θ1 is binary, three ellipsoids Es(âs, γsΣ̂s), E1(â1, γ1Σ̂1), and
E2(â2, γ2Σ̂2) can be constructed to cover all the measure-
ment and the two groups of measurements. After the ellip-
soid is constructed, the uncertainty sets for the RMVB [5] and
the sample spaces for the DRMVB can now be specified: the
uncertainty set and the sample spaces for (9) and (26) are se-
lected to be Es(âs, γsΣ̂s) and E1(â1, γ1Σ̂1) ∪ E2(â2, γ2Σ̂2)
respectively. We set γ = 0.49γs. Regarding the type-II R-
MVB, the complex sphere is constructed with center â(θ) =∑m

i=1 ai(θ) and radius δmin = supi ∥ai(θ) − â(θ)∥2. The
diagonal loading coefficient µ for (5) is chosen empirically to
be 10σ2

0 . All the convex programs are solved by CVX [12].
Fig. 1 shows the beampatterns of the beamformers, which

are obtained from one Monte Carlo realization of the wave-
forms and the array response. In this example, six interfer-
ers with powers σ2

i = 20 dB, i = 2, . . . , 7 impinge from
θ2 = −30◦, θ3 = −15◦, θ4 = −5◦, θ5 = 15◦, θ6 = 25◦,
and θ7 = 40◦. We can see from Fig. l that the DRMVB
generates the beampattern with smaller main lobe than the R-
MVB (9), providing better interference-plus-noise rejection
capability than the RMVB (9). Fig. 2 and Fig. 3 respec-
tively show the desired signal power estimates and the output
SINRs as functions of the snapshot numbers and the SNRs.
The setup here is similar to that in example 1, except that we
vary K or SNR to evaluate the power estimates and the output
SINRs. Each point in Fig. 2 – Fig. 9 are obtained from 200
Monte Carlo simulations. From Fig. 2 and 3, we note that by
implementing a first-order moment constraint, the DRMVB
can yield better power estimates and can provide sufficient
robustness against the model error than the RMVB (9).

5. CONCLUSIONS

This paper studied distributionally robust beamforming un-
der first-order moment uncertainty. The connection between
the DRMVB and the RMVB are revealed. For the sample
space described by a union of ellipsoids, the DRMVBs with
two types of support uncertainty sets are derived. Simulations
show that the DRMVB under first-order moment uncertainty
provides superior performance over the RMVB in terms of
average output SINR and power estimate.
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