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ABSTRACT 

 

For noncircular signals, optimal widely linear (WL) 

minimum variance distortionless response (MVDR) 

beamformer has a powerful performance by exploiting the 

noncircularity of the received signals. Though, the 

noncircularity rate can be estimated by the steering vector 

(SV) of the signal of interest (SOI), the performance 

degrades as there exist errors in the SOI’s SV. This paper 

introduces a new robust WL beamformer. In the proposed 

approach, the assumed extended steering vector (ESV) of 

the SOI is used to construct an interference-plus-noise 

subspace projection matrix, and the new ESV is estimated 

by maximizing the WL beamformer output power under a 

constraint that prevents the ESV from converging to the 

interference. The proposed algorithm only needs imprecise 

knowledge of the antenna array geometry and the SOI’s 

angular sector. Simulations verify the effectiveness of the 

proposed algorithm. 

 

Index Terms— Array signal processing, widely linear, 

projection matrix, robust widely linear beamformer 

 

1. INTRODUCTION 

 

In array signal processing, beamforming is a widely used 

technology in radar, sonar and wireless communications [1]. 

Conventional beamforming techniques, such as linearly 

constrained minimum variance (LCMV) and minimum 

variance distortionless response (MVDR), aim at a linear 

and time invariant (TI) complex filter for stationary 

observations, whose complex envelopes have been proved 

to be necessarily second-order (SO) circular [2]. However, 

as signals are second-order noncircular and nonstationary 

in radio communication, such as amplitude phase-shift 

keying (ASK), binary phase-shift keying (BPSK), minimum 

shift keying (MSK) and unbalanced quaternary phase shift 

keying (UQPSK) signals [3], the conventional linear and TI 
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approaches like MVDR beamformer turn out to be 

suboptimal and the optimal complex filters become the 

widely linear (WL) [4], [5], [6]. 

The WL MVDR beamformer is firstly introduced by 

Chevalier [7] and shows better performance than 

conventional beamformers. Then, by exploiting the 

noncircularity of the signal of interest (SOI), the optimal 

WL MVDR beamformer proposed in [8] further improves 

the performance, but the SOI’s steering vector (SV) and 

noncircularity coefficient are the priori knowledge. In many 

applications, the noncircularity coefficient is unavailable, 

thus limit the practical implement of the beamformer. 

Subsequently, Xu et al. [9] estimate the noncircularity 

coefficient of the SOI, which makes the optimal WL 

MVDR beamformer available in practical applications. 

However, the estimator requires the SOI’s exact SV to 

achieve optimal performance. A robust WL beamformer is 

presented in [10], the noncircularity coefficient uncertainty 

and the SOI’s SV uncertainty are set to against errors. 

However, it is sensitive to large mismatch of noncircularity 

coefficient. Recently, a robust WL beamformer based on 

spatial spectrum of noncircularity coefficient is proposed in 

[11]. The method reconstructs the extended interference-

plus-noise covariance matrix to get a corrected extended 

steering vector (ESV). It relies on the accurate antenna 

array geometry, so the method is effective on look direction 

error, signal spatial signature mismatch but not robust to 

channel gain and phase error, sensor location error. 

In this paper, we propose a new robust WL beamformer. 

As the aforementioned WL beamformer needs accurate 

information to reconstruct covariance matrix, we find a 

more robust WL beamformer with less priori information 

needed. Motivated by conventional robust beamformer [12], 

which constructs an interference-plus-noise subspace 

projection matrix, we develop this projection matrix in area 

of the WL beamformer. Then considering the ESV is 

sensitive to mismatch, we set the largest projection value in 

the SOI’s angular sector to relax the projection constraint. 

Finally, the ESV is obtained by solving a quadratically 

constrained quadratic programming (QCQP) problem. The 

priori information we need are the imprecise knowledge of 

the antenna array geometry and the SOI’s angular sector. 
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2. OPTIMAL WIDELY LINEAR MVDR 

 

2.1 signal model 

 

We consider an array of N  antennas to receive narrowband 

signals and the array output ( )tx  is an 1N   complex 

vector. ( )tx  can be modeled as 

 ( ) ( ) ( )t s t t x a v   (1) 

where ( )s t  is the SOI’s complex envelope, assumed SO 

noncircular, a  is the SOI’s SV and ( )tv  is the total 

interference-plus-noise vector, respectively. The noise is 

assumed to be circularly symmetric Gaussian white process. 

The SO statistics of the noncircular observation ( )tx  are 

defined by 

 ( ) ( )H H

x sE t t     R x x aa R   (2) 

 s( ) ( )T T

x sE t t      C x x aa C  (3) 

where < >  denotes the time-averaging operation, with 

respect to the time index t , 
2

( )s E s t  
 

 is the time-

averaged power of the SOI, 
2( ) /s sE s t      is the 

noncircularity coefficient of the SOI, with sj

s s e
  , 

0 1s  , where s  and 
s  denote the noncircularity 

rate and phase, R  and C  are the correlation matrices of 

the total interference-plus-noise, which are defined as 

( ) ( )HE t t   R v v  and ( ) ( )TE t t   C v v . 

 

2.2 optimal WL MVDR beamformer 

 

To exploit the noncircularity of ( )tx , the WL MVDR 

beamformer utilizes the extended observation vector as 

( ) ( ) , ( )
T

T Ht t t  x x x , using the signal model (1), we get 

 *

1 2( )= ( ) ( ) ( )t s t s t t x a a v   (4) 

where 1 ,
T

T T

N
  a a 0 , 2 ,

T
T H

N
  a 0 a , and 

( ) ( ) , ( )
T

T Ht t t  v v v . The SO statistics of ( )tx  and ( )tv  

are 

 
* *

( ) ( )
x xH

x x

E t t
 

     
 

x

R C
R x x

C R
 (5) 

 
* *

( ) ( )H

v E t t
 

     
 

R C
R v v

C R
  (6) 

Further exploiting the noncircularity of the SOI, the 

optimal WL MVDR beamformer in [8] gives the following 

orthogonal decomposition of *( )s t  

  
1/2

2* *( ) ( ) 1 ( )s s ss t s t s t      
 

  (7) 

with *( ) ( ) 0E s t s t     and 
2

( ) 1E s t  
 

. Then the 

extended observation vector can be written as 

 

   
1/2

2*

1 2 2

( )

( )= ( ) ( ) 1 ( )

( ) ( )

s s s

t

t s t s t t

s t t




 

      
 



a v

x a a a v

a v

  (8) 

where * *

1 2 ,
T

T H

s s       a a a a a  is the equivalent ESV of 

the SOI, which now depends on 
s , and ( )tv  is the global 

noise vector for the extended observation vector ( )tx . The 

optimal WL beamformer is then designed as 

 min subject to 1H H

v  
w

w R w w a   (9) 

where ( ) ( )H

v E t t
  

   R v v , the optimal solution of (9) 

is 

 
1 1 1

MVDR [ ]H

v v   

  w a R a R a   (10) 

The output signal-to-interference-plus-noise ratios (SINR) 

of a WL filter w  is defined by 

 

2

SINR[ ]

H

s

H

v




w a
w

w R w
  (11) 

In practical application, the exact v
R  and a  are 

unavailable, and replaced by the extended sample 

covariance matrix    
1

ˆ 1/
K H

x k
K k k


 R x x , where K  is 

the number of snapshots, and the presumed SV a . 

Moreover, when the noncircular coefficient s  is known as 

a priori information, the WL weight vector (10) becomes to 

 
1 1 1

MVDR
ˆ ˆ[ ]H

x x  

  w a R a R a   (12) 

where 
*= ,

T
T H

s   a a a . In [9], The estimate of s  is 

given as 

 
*

1
ˆ

ˆ( )

H H

s H H

N x


 

  


a Ea a a

a Da a I R a
  (13) 

where * 1 * 1( )x x x x

 D R C R C , * 1

x x

E DC R  and ̂  is the 

minimum eigenvalue of xR . Substituting (13) in (12), we 

can implement the optimal WL MVDR beamformer 

practically. Note that an inaccurate SV would result in a 

bad estimate of s , thus degrading the WL beamformer’s 

performance.  

 

3. PROPOSED ALGORITHM 

 

In this section, we introduce a new robust WL beamformer. 

First, we construct the interference-plus-noise subspace 

projection matrix i nP . The extended sample covariance 

matrix ˆ
xR  can be eigendecomposed as 

2

1

ˆ N H

x i i ii



R e e , 
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where 2

1 2 2N        are the eigenvalues of ˆ
xR  in 

descending order, and 
ie  for 1,2, ,2i N  are the 

corresponding eigenvectors, 2  denotes the noise power. 

When the mismatch between the assumed ESV 

*

ˆ
ˆ,

T
T H

s    a a a  and the actual one *,
T

T H

s    a a a  is 

small, as in [12, 13], the eigenvectors corresponding to the 

small projections of ̂a  on the eigenvector 
ie  can be used 

to structure the 
i nU  which spans the new estimated 

interference-plus-noise subspace. 

  The projections  
2

ˆ

H

ip i  e a  1,2, ,2i N  are 

arranged in descending order,      1 2 2p p p N   . 

If        
2

1
1 2 /

N

i
p p p n p i 


       , 0 1   is a 

given parameter representing the energy percentage, the 

interference-plus-noise subspace can be constructed 

as
1 2 2[ , , , ]i n n n N  U e e e . Thus, the new estimated 

interference-plus-noise subspace projection matrix can be 

obtained as H

i n i n i n  P U U . 

  Next, we construct a projection constraint. By formulating 

the noncircular coefficient (13) at different direction  , 

 
*

1

( ) ( ) ( ) ( )
ˆ( )

ˆ( ) ( ) ( ) ( ) ( )

H H

H H

N x

   
 

    
  



a Ea a a

a Da a I R a
   (14) 

where ( )a  is the steering vector associated with a 

hypothetical direction   based on the known array 

geometry structure, the ESV that comes from direction   

can be constructed as      *

ˆ
ˆ, ( )

T
T H

      
 

a a a . Fig. 

1 depicts the relation of  ˆ

H

i n  P a  with  , where   

denotes the Euclidean norm. The example set up is the 

following. A uniform linear array (ULA) composed of 

4N   omnidirectional sensors with half a wavelength 

apart, one SOI and two interferences are all BPSK signals 

arriving from the directions 0 , 40 , 30 , with 10, 20, 

20dB, and noncircularity rates 6
j

e


, 
2

3
j

e




, 3
j

e


 

respectively. The SOI is assumed from =0  . The number 

of snapshots is 300. 

In Fig. 1, we can find that the term  ˆ

H

i n  P a  has the 

smallest values around the presumed direction  , and a 

relative large value outside the SOI’s angular section. Thus, 

we can constraint the projection to ensure the modified 

ESV ˆ
ˆ
a  does not converge to any interference 

 ˆ ˆ
ˆH H

i n i n  P a P a   (15) 

As there exists mismatch between the assumed ESV and 

the actual one, the constructed interference-plus-noise 

subspace projection matrix i nP  is not so accurate, which 

may lead to the projection of the actual ESV H

i n P a  is not 

the minimum value. Thus, we get a more reasonable 

constraint by relaxing the constraint (15) to 

  ˆ ˆ
ˆ maxH H

i n i n 


 


P a P a   (16) 

where  min max,   is a known angular sector, which the 

SOI locates in. This angular sector is assumed to be 

distinguishable from interfering signals, which can be 

obtained from low resolution direction finding methods. 

The constraint means that the modified ESV just has less 

correlation with 
i nP  than the largest one in the SOI’s 

angular section. The reason to change the constraint can be 

explain by Fig. 2. The experiment’s conditions are the same 

as Fig. 1, except that the SOI’s direction is assumed from 

0  but actually comes from 4 , and the SV of both SOI and 

interferences have gain and phase errors, which are drawn 

from the random generators  1,0.05N  and  0,0.05N  . 

The values of H

i n P a  and ˆ

H

i n P a  are specially pointed 

out in Fig. 2, the new bound  ˆmax H

i n 





P a  is the 

maximum value in the SOI’s angular section,  5,5  . 

We can find the projection of the actual ESV H

i n P a  is 

larger than the presumed one ˆ

H

i n P a , but still under the 

new bound. Thus the constraint (15) is unreachable, but the 

revised one (16) is still satisfied. 

The presumed ESV is corrected as ˆ ˆ
ˆ
  a a e , the 

mismatch vector e  can be decomposed into two orthogonal 

components,  e e e , where e  is parallel to ̂a  and 
e  

is orthogonal to ̂a . As any scaling of the SV does not 

impact the output SINR, we can ignore the e  component 

[14], and e  can be found by maximizing the output power 

of the WL beamformer    1ˆ ˆ1/ H

WL xP   

a a R a  under the 

projection constraint: 

 

   

   

1

ˆ ˆ

ˆ

ˆ ˆ

ˆmin

subject to 0

max

H

x

H

H H

i n i n

 



 








 



  


 



 

e
a e R a e

a e

P a e P a

  (17) 

The optimization problem (17) is a feasible quadratically 

constrained quadratic programming (QCQP) problem and 

can be easily solved with the help of CVX Toolbox [15]. 

Finally, the estimated ESV of the SOI is ˆ ˆ
ˆ
   a a e , 

and the WL weight vector of the proposed WL beamformer 

can be computed as 

  
1

1 1

ˆ ˆ ˆ
ˆ ˆ ˆˆ ˆH

pro x x  


 w a R a R a   (18) 
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4. SIMULATION RESULTS 

 

In our simulations, a ULA with 4N   omnidirectional 

sensors spaced half a wavelength is used. The additive 

noise is modeled as complex circularly symmetric Gaussian 

zero-mean spatially and temporally white process. The 

desired signal and two interferences are all BPSK. The 

desired signal is assumed to be from the presumed direction 

0s
  with noncircularity phase 60 . Two interferences 

are assumed to be from 30  and 40 , with noncircularity 

phase 120  and 150 , respectively. The interference-to-

noise ratio (INR) is equal to 20 dB. The proposed 

beamformer (18) is compared to the robust WL-RCB [10], 

the reconstruct method [11], and the conventional robust 

beamformer [12], the optimal SINRs of Capon’s MVDR 

and optimal WL MVDR are also shown in figures. SOI’s 

angular sector is set to be  5,5   for the proposed 

method and [11], the value =0.1, =0.3a N   is used in [10], 

=0.9  is set in [12] and our method, two hundred Monte 

Carlo trials are simulated for each calculation. 

  In the first experiment, we consider signal look direction 

mismatch for both desired signal and interferences. The 

random direction-of-arrival (DOA) mismatch is uniformly 

distributed in 4 4   ， , which changes from run to run but 

remain fixed from snapshot to snapshot. Fig.3 shows the 

output signal-to-interference-plus-noise ratio (SINR) versus 

the input signal-to-noise ratio (SNR), with 300 snapshots. 

The results in Fig. 3 reveal that the proposed robust WL 

beamformer has a comparative performance with the 

reconstruct method, and much better performance than 

other tested algorithms. 

  In the second experiment, we consider both signal look 

direction mismatch for both desired signal and 

interferences, and calibration errors caused by gain and 

phase perturbations in each antenna. The random DOA 

mismatch is the same as the first experiment. The gain and 

phase errors are drawn from the uniformly distributed 

generator in  0.02 0.02 ，  and 5 5   ， . Fig. 4 shows the 

output SINR versus the input SNR, with 300 snapshots. 

The results in Fig. 4 reveal that the proposed robust WL 

beamformer not only outperforms the conventional robust 

adaptive beamformer but also has a better performance than 

other robust WL beamforming algorithms. The results in 

Fig. 3 and Fig. 4 show the proposed algorithm can provide 

more robust against various mismatches. 

 

5. CONCLUSION 

 

In this paper, we have proposed a robust WL beamformer 

based on a projection constraint. The proposed method 

needs much less priori information and provides more 

robust than previous WL beamformers. The experiments 

show the proposed method achieves a better performance 

than other algorithms. 
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