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ABSTRACT

This paper presents a robust design of the transmit beampat-
tern for uniform linear antenna arrays. Existing designs are
usually completed at the stage of achieving an optimal trans-
mit covariance matrix from identifying a weighting matrix
with the assumption of ideally orthogonal waveforms. How-
ever, we propose a compensation technique to achieve the op-
timal covariance matrix without the requirement of orthogo-
nality. The corresponding solutions identify a set of weight-
ing matrices that are robust against the imperfection of the
waveforms. As a result, a set of easy-to-generate partially cor-
related linear frequency modulated (LFM) waveforms can be
used to achieve identical transmit beampatterns which could
be synthesized by ideally orthogonal multiple-input multiple-
output (MIMO) radar waveforms. The proposed robust de-
sign is evaluated via numerical examples.

1. INTRODUCTION

The design of transmit beampattern for a uniform linear an-
tenna array is not new. Conventionally, phased-array radar
systems achieve the design by identifying a weighting vec-
tor for a set of coherent waveforms. This problem has been
equivalently considered as the mapping from a finite impulse
response (FIR) filter design problem [1]. Alternatively, a set
of orthogonal waveforms can be used to synthesize the trans-
mit beampatterns, which takes the advantage of waveform di-
versity to improve the estimation performance at the receiver,
such as parameter identifiability [2]. Transmit beampattern
design using non-coherent waveforms has drawn much atten-
tion recently as discussed in [3–6], especially for multiple-
input multiple-output (MIMO) radar systems.

Since the transmit beampattern is characterized by the co-
variance matrix of the transmitted weighted waveforms, the
design is split into two procedures: i) the design of the trans-
mit covariance matrix, and ii) the signaling strategy to achieve
the covariance matrix obtained in i). The definition of the co-
variance matrix of the weighted waveforms can be approxi-
mated as

R , W

(
lim

N→∞

1

N
SSH

)
WH ≈ WSSHWH ≈ WWH ,

(1)

where N is the sample length of the waveforms, and {·}H is
the complex conjugate operator. The dimensions of the above
matrices are R ∈ CNT×NT , weighting matrix W ∈ CNT×K ,
and waveform matrix S ∈ CK×N , where NT is the number of
transmit antennas and K is the number of orthogonal wave-
forms, K ≤ NT. It is assumed in (1) that the covariance ma-
trix could be approximated by a finite number of samples, the
waveforms have unit norm, and the waveforms are perfectly
orthogonal, i.e., SSH = I, where I is an identity matrix with
appropriate dimension.

Let the optimal transmit covariance matrix obtained from
i) be R̂, then according to [5] and [6], the weighting ma-
trix W is obtained by solving WWH = R̂. Throughout
this paper, R̂ is considered available, obtained via existing
methods as in [5] and [6]. Eigenvalue decomposition of R̂
is an efficient way to obtain W. Let R̂ = Q̂Λ̂Q̂H , where
Q̂ ∈ CNT×K , and Λ̂ ∈ CK×K , then the solution can be ob-
tained as

Ŵ = Q̂
√
Λ̂U0, (2)

where U0 ∈ CK×K is an arbitrary unitary matrix. Equations
(1)-(2) provide a commonly agreed solution which has theo-
retical merits in terms of simplicity and efficiency when used
with well designed orthogonal waveforms as noted in [7, 8],
and the references therein. However, the practical issues such
as implementation difficulty of the orthogonal waveforms and
the imperfection of the orthogonality, have not received suffi-
cient attention.

The novelty of the reported work is as follows. We pro-
pose a robust design of the transmit beampattern using a set
of easy-to-generate partially correlated linear frequency mod-
ulated (LFM) waveforms. Instead of using (1)-(2), we pro-
pose a robust solution with the formulation using a compen-
sation technique. The proposed work is an extension to our
work in [6]. In there it was assumed that perfectly orthogo-
nal waveforms are available. However, as shown in literature
(e.g. [9]), obtaining a large set of perfectly orthogonal wave-
forms is difficult. The robust design proposed here gener-
ally exhibits the advantage of easing the burden on orthogonal
waveform design. Via the obtained robust weighting matrix,
non-orthogonal waveforms can be used to achieve identical
beampatterns that could be obtained by ideal waveforms. We
also provide a quantitative assessment of the impact of the
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waveform non-orthogonality on the design. In addition, the
robust design is not limited to LFM signals, and can also be
used with other radar waveforms. In summary, the proposed
method is more general than either approaches in [4] and [5]
and achieves optimum performance to that shown in [6].

2. THE ROBUST DESIGN

The robust design assumes no perfect orthogonality among
the transmitted waveforms. Due to this, certain degradation
occurs in the covariance matrix of the un-weighted wave-
forms, and (1) is rewritten as

R = WSSHWH . (3)

Although perfect orthogonality is not used in the above equa-
tion, the free variable matrix W can be designed to com-
pensate such imperfection resulting from non-orthogonality.
Here a compensation technique is formulated by setting R =
R̂, i.e., WSSHWH = R̂. Let R̃ = SSH , then the following
derivations provide the corresponding solution.

WR̃WH = R̂ (4)

⇐⇒ WQ̃Λ̃Q̃HWH = Q̂Λ̂Q̂H (5)

⇐⇒ WQ̃
√
Λ̃ = Q̂

√
Λ̂U (6)

⇐⇒ Ŵ = Q̂
√
Λ̂U

(√
Λ̃
)−1

Q̃H , (7)

where Q̃, Λ̃ ∈ CK×K are from the eigenvalue decomposition
of R̃, and U ∈ CK×K is an arbitrary unitary matrix. It can
be seen that (2) is a special case of (7) when Λ̃ = I, i.e., the
waveforms are perfectly orthogonal. It is also noted that the
existence of the robust solution only requires Λ̃ to be invert-
ible, i.e., S is full row rank. This is a significant relaxation
on the waveform requirements. Note that in (7), the portion
Q̂
√
Λ̂ is fixed because it is arising from R̂, whereas U and

Λ̃ are tunable. The general steps to achieve a robust design of
transmit beampattern are thus summarized as follows.

1. Obtain R̂, the optimal transmit covariance matrix based
on the required specifications.

2. Choose non-coherent easy-to-generate waveforms to
satisfy hardware requirements. (The orthogonality of
waveforms determines Λ̃, which is discussed later.)

3. Select a suitable matrix U and obtain Ŵ using (7).

In the following content, we provide further discussions on
the selection of U and Λ̃ to obtain a suitable solution.

2.1. Quantization Error and the Unitary Matrix U

It is indicated in [6] that the design of the transmit beam-
pattern is equivalent to the design of a multiple-input single-
output (MISO) FIR filter. We note that the finite-word-length

effects are inherent in practical implementations of digital fil-
ters [10]. As such we will use the finite word-length effects as
an optimality criterion in the proposed robust design [11]. Let
the word rounding step-size of the waveforms and the multi-
plier output be Q1 and Q2 respectively. Let the quantization
noise of the waveforms be ekS(n), k ∈ {0, 1, · · · ,K− 1}. Let
the quantization noise at the multiplier output be el,kM (n), l ∈
{0, 1, · · · , NT − 1}. The quantization noises are i.d.d. ran-
dom variables with uniform distribution over the quantiza-
tion step-size, i.e., ekS(n) ∼ U(−0.5Q1, 0.5Q1), e

l,k
M (n) ∼

U(−0.5Q2, 0.5Q2). It then follows that the corresponding
mean and variance values are ηS = ηM = 0, σ2

S = Q2
1

/
12,

and σ2
M = Q2

2

/
12. Denote

Ŵk(θ) =

NT−1∑
l=0

wl,ke
−jπl cos θ, (8)

which is the spatial domain response of the kth branch of the
MISO filter. The overall output noise power σ2

MISO due to the
finite-word-length effects is then given by

σ2
MISO =

K−1∑
k=0

σ2
S

∫
θ

∣∣∣Ŵk(θ)
∣∣∣2 dθ︸ ︷︷ ︸

Waveform Quantization

+
K−1∑
k=0

NT−1∑
l=0

σ2
M︸ ︷︷ ︸

Multiplier Output Quantization

=
K

12

(
Q2

1∥Ŵ∥2 +NTQ
2
2

)
, (9)

where the Parseval’s theorem [10] is used to evaluate the in-
tegration, and ∥ · ∥ denotes the Frobenius norm. It is seen
from (9) that the output quantization noise power is propor-
tional to ∥Ŵ∥2. Hence the optimization problem to obtain U
to minimize the output noise power σ2

MISO is expressed as

min
U

∥Ŵ∥2

s.t. UUH = I. (10)

Note that optimization under similar constraints have been
used in other areas of array processing too, although in dif-
ferent applications [12]. According to (7), we have

∥Ŵ∥2 = tr{ŴŴH}

= tr
{
Q̂
√

Λ̂U
√
Λ̃−1Q̃HQ̃

√
Λ̃−1UH

√
Λ̂Q̂H

}
= tr

{√
Λ̂Q̂HQ̂

√
Λ̂UΛ̃−1UH

}
= tr{Λ̂UΛ̃−1UH}. (11)

Hence (10) can be rewritten as

min
U

tr{Λ̂UΛ̃−1UH}

s.t. UUH = I. (12)

Note that the solution (2) under perfect waveform correlation
assumption has a fixed norm for the weighting matrix, and
thus the selection of the unitary matrix U0 is trivial. Next, we
investigate the eigenvalue spread of R̃.
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2.2. The Eigenvalue Spread of R̃

The eigenvalue spread of R̃ (equivalently of Λ̃) is determined
by the correlation property of the waveforms. Let the diagonal
elements of Λ̃ be in descending order, i.e., {λ̃max, · · · , λ̃min},
then the eigenvalue spread, denoted as ρ, is defined as

ρ =
λ̃max

λ̃min
. (13)

In this paper, we consider the most commonly used and easy-
to-generate radar waveforms–the linear frequency modulated
(LFM) waveforms (chirps) as an example to study the eigen-
value spread of R̃. The use of a set of LFM waveforms for
MIMO radar systems is presented in [13]. Here, we use a sim-
ilar approach to generate a set of LFM waveforms and quanti-
tatively study the relationship between the eigenvalue spread
of R̃ and the waveform parameters. Let the bandwidth of
the baseband waveforms be B. Let the duration of the single
pulse transmission be T . Let the (initial) frequency step-size
be f0. Let the chirp rate be κ. The set of K non-orthogonal
LFM waveforms are then expressed as

sk(t) =
1√
T

exp

{
j2π

(
kf0t+

1

2
κt2

)}
, (14)

where k ∈ {0, 1, · · · ,K − 1}. The parameters f0 and κ are
confined by B, T , and K: the instantaneous frequency of
sK−1(t) at time T should be no greater than B, i.e.,

d
(
(K − 1)f0t+

1
2κt

2
)

dt

∣∣∣∣∣
t=T

≤ B

⇐⇒ (K − 1)f0 + κT ≤ B

⇐⇒ κ ≤ (B − (K − 1)f0)

T
. (15)

Substituting (15) into (14), one can easily obtain the expres-
sions of the K LFM waveforms. The correlation between
sk(t) and sk+∆k(t), ∆k ∈ {1, 2, · · · ,K − 1}, at zero lag,
which is the (k, k +∆k)th element of R̃, is given by

|Rk,k+∆k(f0)| =

∣∣∣∣∣
∫ T

0

sk(t)s
∗
k+∆k

(t)dt

∣∣∣∣∣
=

1

T

∣∣∣∣∣
∫ T

0

ej2π{kf0t+
1
2κt

2−(k+∆k)f0t− 1
2κt

2}dt

∣∣∣∣∣
= |sinc {π∆kf0T}| . (16)

It is observed that if ∆k = 0, then (16) becomes the auto-
correlation of sk(t) at zero lag, which is unity. An intuitive
way to select f0 in (16) is by setting f0T = 1, thus f0 = 1/T .
Then ∀∆k, |Rk,k+∆k(f0)| = 0. Therefore λ̃max = λ̃min. Due
to the sampling effects, small values may exist in off-diagonal
elements of R̃. This is the best possible way to obtain a de-
correlated set of LFM waveforms.
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Fig. 1. 1/ρ versus f0, where B = 100 kHz, and T = 1 ms.

However, T is usually chosen very small to preserve the
range ability of the radar system. In this situation, large value
of f0 reduces the bandwidth efficiency. Since the robust de-
sign allows waveforms without good correlation properties, it
is possible to select f0 < 1/T . However if f0 is chosen too
small such that the LFM waveforms are highly correlated (as
can be seen from Fig. 1), then large values will appear in the
diagonal elements of Λ̃−1, which results in a large value of
∥Ŵ∥2 in (11) and amplifies the quantization error. Hence,
with the incorporation of (12), the overall optimization prob-
lem for robust transmit beampattern design using LFM wave-
forms is formulated as

min
U,f0

|Rk,k+∆k(f0)|+ |f0|

s.t.
∣∣∣tr{Λ̂UΛ̃−1UH} −NT

∣∣∣ < ζ,

UUH = I, (17)

where ζ is a small positive real number. The inequality con-
straint ensures that ∥Ŵ∥2 resulting from the robust design is
close to, if no less than, that resulting from the design un-
der ideal assumptions. The solution to (17) identifies U for a
selected Λ̃, which are then substituted into (7) to obtain the
weighting matrix. In the following section, we provide sev-
eral empirical solutions to (17).

3. NUMERICAL EXAMPLES

In this section, we present several examples to illustrate the
advantages of the proposed robust design. We use the feasi-
bility problem (FP) based algorithm [6] to obtain R̂ with min-
imum number of antennas. The free field is modeled as a 2 di-
mensional space with azimuth angle from 0◦ to 180◦ , where
90◦ corresponds to the broadside. The desired transmit beam-
pattern is specified as follows. The passband is [70◦, 120◦],
the transition band is 20◦, passband ripple bound is 0.1, and
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(a) f0 = 800 Hz, ∥Ŵ∥2 = 42.9635.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Angle θ (Degree)

B
ea

m
pa

tte
rn

 P
(θ

)

 

 
Omnidirect.
TBP_LFM
TBP_QCC
RTBP_LFM

(b) f0 = 900 Hz, ∥Ŵ∥2 = 11.9692.
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(c) f0 = 1 kHz, ∥Ŵ∥2 = 11.1096.

Fig. 2. Designed transmit beampatterns using standard and robust techniques, where N̂T = 11, and U = U0 = I.

stopband ripple bound is 0.1. The solution of the minimum
required number of transmit antennas is N̂T = 11.

The transmit beampatterns obtained from the robust de-
signs are shown in Fig. 2, where the beampatterns of omnidi-
rectional transmission, and the standard transmit beamspace
processing (TBP) designs using quadratic congruence coded
(QCC) [9] and LFM waveforms are also provided for compar-
ison. QCC waveforms are generally better than LFM wave-
forms for improved orthogonality, but they are more difficult
to generate. The bandwidth and time duration of the LFM
waveforms are set as B = 100 kHz, and T = 1 ms. Because
(4)-(7) indicate that the transmit beampattern is independent
of U, we set U = U0 = I. Note that U only affects ∥Ŵ∥2
as indicated in (11). It is seen from Fig. 2 that the robust
design can compensate the imperfection of the waveform cor-
relations and recovers the desired beampatterns, i.e., the the-
oretical one resulting from R̂. It is also seen that reducing
the correlations among the LFM waveforms results the TBP
based design approaching the robust TBP design. However,
even at the least correlation point f0 = 1 kHz, there still ex-
ist mismatches between the two designs. The advantage of
the robust design is therefore demonstrated. Next, we illus-
trate the tuning of f0 and U to change waveform correlations,
bandwidth usage, and reduce ∥Ŵ∥2.

For efficient bandwidth usage, it is preferable that f0 <
1/T . However, reducing f0 increases the correlations of the
LFM waveforms, which results in large values appearing in
Λ̃−1 and thus ∥Ŵ∥2 becomes very sensitive to U due to
(11). In this situation, U need to be carefully selected to limit
∥Ŵ∥2. An empirical approach to study the impact of U on
∥Ŵ∥2 is provided through Fig. 3, where the specifications of
the desired beampattern is the same as those used in Fig. 2,
and f0 is chosen along the rising edge within 0 < f0 < 1
kHz. Among 1000 independent realizations of U for 3 differ-
ent values of f0 respectively, one can obtain the U’s that min-
imize ∥Ŵ∥2. The minimum values of ∥Ŵ∥2 are 14.9353,
12.1387, and 10.6882 for f0 = 800, 850, and 1 kHz, respec-
tively. For example when f0 = 800 Hz, a suitable choice
of U is able to reduce ∥Ŵ∥2 from 42.9635 in Fig. 2 (a) to
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Fig. 3. ∥Ŵ∥2 versus random realizations of U, where N̂T =

11, and the minimum values of ∥Ŵ∥2 are 14.9353, 12.1387,
and 10.6882 for f0 = 800, 850, and 1 kHz, respectively.

14.9353, which is a significant improvement.

4. CONCLUSIONS

This paper has presented a robust design of the transmit
beampatterns for active uniform linear antenna arrays. A
compensation technique is formulated and investigated. In-
stead of imposing perfect correlations conditions for the
waveforms, or using waveforms with very good correlation
properties as seen in existing literature, the robust design uti-
lizes non-orthogonal and easy-to-generate waveforms. The
only constraint on the waveforms is that they should not be
fully coherent. We use a set of LFM waveforms as an exam-
ple to illustrate the design. An overall optimization problem
is formulated to identify the LFM waveform parameter f0 and
the unitary matrix U. Empirical solutions are presented to
demonstrate the advantages. The resultant transmit beampat-
terns are identical to those designed under ideal orthogonality
assumption. Generally, the proposed method is applicable to
any arbitrarily selected waveforms.
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