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ABSTRACT

In this paper, multi-group multicast beamforming is considered
with antenna selection. Nonconvex joint problem is converted to
an equivalent biconvex problem by using exact penalty approach.
The equivalent problem is solved iteratively using alternating max-
imization where a convex problem is solved at each step. Antenna
selection reduces the total transmitted power significantly compared
to the scenario with fixed antennas. Proposed method is compu-
tationally efficient and presents significant improvements in total
transmitted power.

Index Terms— Antenna selection, multicast beamforming, con-
vex optimization, alternating maximization

1. INTRODUCTION

In this paper, multi-group multicast transmit beamforming is consid-
ered where a transmitter with multiple antennas transmits different
signals to groups of users by using different beamformer weight vec-
tor for each group. Multicast beamforming employs channel state in-
formation (CSI) to effectively steer power towards multicast groups
while minimizing the interference between them. Multicast beam-
forming is included in LTE standard [1].

Using multiple antennas at the base station is an efficient ap-
proach to overcome signal fading and increase the capacity. How-
ever, the cost and the complexity of multichannel structures increase
as the number of antennas increases [2]. As the antenna technology
and fabrication techniques develop, antennas become cheaper and it
is possible to switch large number of antennas with a limited num-
ber of RF chains [3]. It is known that antenna selection can improve
power efficiency compared to a fixed antenna structure. It is a good
low-cost alternative to increase spatial diversity and improve chan-
nel capacity [4]. Antenna selection is used in different applications
[5], [6] and proposed for multicast beamforming in [3], [7].

The optimization problem for multicast beamforming with an-
tenna selection is nonconvex and NP hard. Previous approaches em-
ploy semidefinite relaxation and randomization together with sub-
optimal antenna selection schemes [3]. Nonconvex rank condition
together with the antenna selection scheme result a hard to solve
problem. While most of the previous works drop the rank condition
and solve a relaxed version of the optimization problem, an alterna-
tive and more complete form is presented in our case.

In this paper, nonconvex rank and integer constraints are con-
verted to bilinear constraints which allow the use of exact penalty
approach. This conversion is then exploited to implement alternating
maximization where the resulting biconvex problem is solved itera-
tively. These iterations are guaranteed to converge. This is due to the
fact that a convex problem is solved at each iteration. The worst case
complexity of the semidefinite programming (SDP) problem which

is solved at each iteration is less than the alternatives [3]. Simu-
lations show that small number of iterations is needed for the pro-
posed algorithm. The proposed solution performs well, significantly
improving the total transmitted power compared to the alternative
techniques.

2. SYSTEM MODEL
Consider a wireless scenario comprising a base station equipped
with M transmit antennas and N receivers, each having a single
antenna. Assume that there are G multicast groups, {G1, ...,GG},
where Gk denotes the kth multicast group of users. Each receiver
listens to a single multicast, i.e., Gk

⋂
Gl = ∅. The signal transmit-

ted from the antenna array is x(t) =
∑G

k=1
w∗ksk(t) where sk(t)

is the information signal for the users in Gk and w∗k is the related
M × 1 complex beamformer weight vector. It is assumed that infor-
mation signals {sk(t)}Gk=1 are mutually uncorrelated each with zero
mean and unit variance, σ2

sk = 1. In this case, the total transmit-
ted power is

∑G

k=1
wH
k wk. The received signal at the ith receiver

is given as, yi(t) = hTi x(t) + ni(t), i = 1, ..., N , where hi is
the M × 1 known complex channel vector for the ith receiver and
ni is the additive noise uncorrelated with the source signals, whose
variance is σ2

i . Assuming that ith receiver is in the kth multicast
group, Gk, signal-to-interference-plus-noise ratio (SINR) for the ith

receiver is,
SINRi =

|wk
Hhi|2∑

l6=k |wl
Hhi|2 + σ2

i

(1)

Quality of service (QoS) multicast beamforming problem is to min-
imize the total transmitted power subject to receive-SINR constraint
for each user, i.e.,

min
{wk∈CM}G

k=1

G∑
k=1

wH
k wk (2.a)

s.t.
wk

HRiwk∑
l 6=k wl

HRiwl + σ2
i

≥ γi, (2.b)

∀i ∈ Gk, ∀k, l ∈ {1, ..., G}

where γi is the SINR threshold for the ith receiver and Ri =
hih

H
i . The problem in (2) is not convex [1]. Let us define

w = [ wT
1 wT

2 ... wT
G ]T and W = wwH . Wk = wkw

H
k

shows the (k, k)th block of W. The problem in (2) can be written
as,

min
W∈CGM×GM

Tr{W} (3.a)

s.t. T r{RiWk} − γi
∑
l 6=k

Tr{RiWl} ≥ γiσ2
i , (3.b)

∀i ∈ Gk, ∀k, l ∈ {1, ..., G}
W � 0 (3.c)

rank(W) = 1 (3.d)
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In [1] and [8], the above problem is solved by convex optimization
with semidefinite relaxation where the rank condition is dropped and
randomization is used to obtain a feasible suboptimal solution. In
this paper, the problem is exploited to generate a biconvex structure
which can be solved more effectively than the relaxation and ran-
domization approaches.

3. ANTENNA SELECTION
Assume that L RF transmission chains are available, while there are
M antennas. The problem is to select the best L out of M antennas
and find the corresponding beamforming weight vectors to minimize
the total transmitted power. Let us define a M × 1 vector, b, whose
elements are either 0 or 1. The mth element of b, bm, is the antenna
selection coefficient for the mth antenna. Hence, bm = 1 if the
mth antenna is selected, and it is zero otherwise. We can use big-
M approach to formulate antenna selection problem with the aid of
binary variables, bm [9]. The joint problem can be written as,

min
W∈CGM×GM ,b

Tr{W} (4.a)

s.t. T r{RiWk} − γi
∑
l6=k

Tr{RiWl} ≥ γiσ2
i , (4.b)

∀i ∈ Gk, ∀k, l ∈ {1, ..., G}
W � 0 (4.c)

rank(W) = 1 (4.d)
G∑
k=1

Wkm,m ≤ Abm, m = 1, ...,M (4.e)

M∑
m=1

bm = L (4.f)

bm ∈ {0, 1}, m = 1, ...,M (4.g)

where A is big enough such that it does not restrict the power of se-
lected antennas [9].

∑G

k=1
Wkm,m stands for the power transmitted

from the mth antenna. In the following part, a condition for an ap-
propriate value for A is found. In the above problem, (4.d) and (4.g)
are the only nonconvex constraints. In this paper, (4) is converted
into an equivalent form which admits more flexible and manageable
solutions. In the following lemma, an equivalent expression for (4.g)
is found.

Lemma 1: The inequalities in (5.a-b) with (4.f) imply (4.g), i.e.,
bm’s are binary variables.

M∑
m=1

b2m = L (5.a)

0 ≤ bm ≤ 1, m = 1, ...,M (5.b)

Proof : Consider the difference of (5.a) and (4.f), i.e.,

M∑
m=1

b2m −
M∑
m=1

bm =

M∑
m=1

bm(bm − 1) = 0 (6)

Each term in the summation in (6) is nonpositive from (5.b). The
only case for (6) to be valid is that all terms in the summation are
equal to zero, i.e., bm ∈ {0, 1}. Hence, (4.g) can be replaced by
(5.a) and (5.b).

The following theorem is used to obtain an equivalent formula-
tion for (4).

Theorem 1: For any P > 0, (4) is equivalent to the following
problem in (7) up to a scale factor in the sense that their optimum
solutions differ only by a real positive scalar.

max
W∈CGM×GM ,b

t (7.a)

s.t. T r{RiWk} − γi
∑
l 6=k

Tr{RiWl} ≥ tγiσ2
i , (7.b)

∀i ∈ Gk, ∀k, l ∈ {1, ..., G}
W � 0 (7.c)

rank(W) = 1 (7.d)
G∑
k=1

Wkm,m ≤ Abm, m = 1, ...,M (7.e)

M∑
m=1

bm = L (7.f)

M∑
m=1

b2m = L (7.g)

0 ≤ bm ≤ 1, m = 1, ...,M (7.h)
Tr{W} = P (7.i)

t > 0 (7.j)

Proof: Assume that (4) is feasible, its optimum solution is Wopt1

and the associated total transmitted power is P1. It is easy to see
that at least one of the SINR constraints in (4.b) should be met with
equality. Otherwise Wopt1 could be scaled down, thereby improv-
ing the objective function. Then (P/P1)Wopt1 satisfies the con-
straints of (7) with the associated variable t1 = (P/P1) > 0.
Hence (7) is feasible if (4) is feasible. Let {Wopt2 , t2} be the
optimum solution of (7). t2 can only be greater than or equal to
t1. If t2 is strictly greater than t1, then it is possible to satisfy the
constraints of (4) using Wopt2/t2 whose total transmitted power is
P2 = (t1/t2)P1 < P1, which is a contradiction. Therefore t2 = t1
and Wopt2 = (P/P1)Wopt1 is the optimum solution. At this point,
we have shown that whenever (4) is feasible, the optimum solutions
of both problems are the same up to a scale factor. If (4) is not fea-
sible, the constraints in (4) will not be satisfied. Therefore, for the
same problem setting (SINR threshold values, γi, and noise vari-
ance, σ2

i ) no solution can be found for (7), otherwise a feasible so-
lution can be found for (4) by scaling up or down the solution of (7).
�

Note that
∑G

k=1
Wkm,m ≤ P for each m. Big-M parameter A

can be selected as A = P , without restricting the power of selected
antennas.

In the following parts, the problem in (7) is converted into a bi-
convex structure suitable for alternating maximization. For this pur-
pose, nonconvex constraints (7.d) and (7.g) are expressed in bilinear
equivalent forms in order to employ exact penalty approach. Hence,
the final form of the optimization problem is obtained after a num-
ber of equivalent transformations. The following theorem is used to
express rank constraint in a more suitable way.

Theorem 2: For GM × GM Hermitian symmetric, posi-
tive semidefinite matrices WI and WII, Tr{WIWII} is upper
bounded by Tr{WI}Tr{WII}, i.e. Tr{WIWII}
≤ Tr{WI}Tr{WII}. This upper bound is reached if and only if
WI and WII are rank one matrices and WII = αWI where α is a
positive scalar.

Proof: The proof of this theorem can be found in [10]. �
In the following part, rank condition in (7.d) is embedded into

the problem in terms of continuous bilinear function of parameter
matrices suitable for alternating maximization.

Corollary 1: For two Hermitian symmetric, positive semidefi-

2490



nite matrices WI and WII, Tr{WI}Tr{WII}−Tr{WIWII} =
0 condition implies rank one matrices, i.e., WII = λ1(W

II)

λ1(WI)
WI

where λ1(.) is the maximum eigenvalue.
The following theorem is presented to obtain an intermediate

problem structure before the final form.
Theorem 3: The optimum solution of (7) and the following op-

timization problem in (8) are the same, namely WI
opt = WII

opt =

Wopt, bI
opt = bII

opt = bopt where {Wopt,bopt} is the optimum
solution of (7):

max
WI,WII∈CGM×GM ,bI,bII

tI + tII (8.a)

s.t. T r{RiW
I
k} − γi

∑
l 6=k

Tr{RiW
I
l} ≥ tIγiσ2

i , (8.b)

Tr{RiW
II
k} − γi

∑
l 6=k

Tr{RiW
II
l} ≥ tIIγiσ2

i , (8.c)

∀i ∈ Gk, ∀k, l ∈ {1, ..., G}

WI � 0, WII � 0 (8.d)
G∑
k=1

W I
km,m

≤ PbIm, m = 1, ...,M (8.e)

G∑
k=1

W II
km,m

≤ PbIIm , m = 1, ...,M (8.f)

M∑
m=1

bIm =

M∑
m=1

bIIm = L (8.g)

M∑
m=1

bImb
II
m = L (8.h)

0 ≤ bIm, bIIm ≤ 1, m = 1, ...,M (8.i)

Tr{WI} = Tr{WII} = P (8.j)

P 2 − Tr{WIWII} = 0 (8.k)

tI , tII > 0 (8.l)

Proof: WI
opt and WII

opt are rank one matrices due to P 2 −
Tr{WIWII} = 0, which is the condition in Corollary 1. Hence
WI

opt = WII
opt since λ1(W

I
opt) = λ1(W

II
opt) = P by (8.j)

and Corollary 1. The conditions in (8.h) and (8.i) imply that
bIoptm , b

II
optm

∈ {0, 1} and bI
opt = bII

opt. Since {WI
opt,b

I
opt} and

{WII
opt,b

II
opt} independently solve the same problem, WI

opt =

WII
opt = Wopt and bI

opt = bII
opt = bopt. �

In the above problem, (8.h) and (8.k) are still nonconvex con-
straints. Fortunately these constraints can be moved into the objec-
tive function using exact penalty approach [11], [12], [13]. This
modification does not change the optimum solution of the problem.
In the following theorem, the equivalency of the new form and (8)
are established.

Theorem 4: The problem in (8) is equivalent to the problem
in (9) for µ1, µ2 > µ0 with µ0 being a finite positive value in the
sense that any local maximum of the problem in (9) is also a local
maximum of the problem in (8).

max
WI,WII∈CGM×GM ,bI,bII

tI + tII − µ1|P 2 − Tr{WIWII}|

−µ2|L− bITbII| (9.a)
s.t. (8.b), (8.c), (8.d), (8.e), (8.f), (8.g), (8.i), (8.j), (8.l)

Proof: Constraints in (9) are all continuous functions. The fea-
sible sets of (8) and (9) are both closed and bounded and hence they
are compact due to the finite dimensional space [14]. Therefore
µ1|P 2 − Tr{WIWII}| + µ2|L − bITbII| corresponds to an l1
exact penalty function [12], [13]. Theorem 4 is valid by definition
[13] and due to [12] (page 408). �

Note that |P 2 − Tr{WIWII}| = P 2 − Tr{WIWII} from
Theorem 2. |L − bITbII| = L − bITbII since bITbII =∑M
m=1

bImb
II
m ≤

∑M
m=1

bIm = L.
The final form of the optimization problem can be given as,

max
WI,WII∈CGM×GM ,bI,bII

tI + tII + µ1Tr{WIWII}

+µ2b
ITbII (10.a)

s.t. (8.b), (8.c), (8.d), (8.e), (8.f), (8.g), (8.i), (8.j), (8.l)

The problem in (10) is a biconvex problem and alternating maxi-
mization can be used to solve it [15], [16]. Alternating maximization
is implemented by using iterations where {WI,r,WII,r,bI,r,bII,r}
are the terms at the rth iteration. At the rth iteration, {WII,r,bII,r}
are obtained by considering {WI,r−1,bI,r−1} as fixed terms. Then
the fixed variables are alternated and {WI,r,bI,r} are obtained
from (10) while {WII,r,bII,r} are kept as fixed.

The objective function in (10) is upper bounded by
2P maxi

Tr{Ri}
γiσ

2
i

+ µ1P
2 + µ2L which can be found similar to

[10]. Since a convex problem is solved at each iteration, the objec-
tive function improves at each iteration and the iterative approach is
guaranteed to converge [16].

4. ALTERNATING MAXIMIZATION ALGORITHM
In the previous parts, the problems in (7) and (10) are shown to
be equivalent in the sense that they have the same optimum solu-
tions. Furthermore, it is shown that (10) can be solved with alternat-
ing maximization. The convergence of this approach is guaranteed.
However, there is no guarantee for the optimum solution after the
convergence. The steps for the proposed approach can be presented
as follows,

Multicast Beamforming with Antenna Selection (MBAS)

Let λ1(W) be the maximum eigenvalue of the matrix W.
Initialization: r = 0,
Set proper µ1, µ2 and solve the relaxed version of (7) by removing
(7.d) and (7.g). Let {Ŵ, b̂} denote the solution. The singular value
decomposition of each Ŵk is calculated as Ŵk = UkΣkU

H
k .

The following initializations are done for simplicity, i.e., bI,0 =
b̂ and WI,0

k,l = Uk

√
ΣkΣlUl. Solve the problem in (10) for

{WII,0,bII,0}.
Phase 1: Iterations (r→ r+1)
1) Solve (10) for {WI,r,bI,r} while fixing {WII,bII} as
{WII,r−1,bII,r−1}.
2) If rank(WI,r) = 1 or λ1(W

I,r) ≥ λ1(W
II,r−1) + β1 (im-

proved solution), where β1 is a proper positive threshold value (Ex:
P/20), keep the value of µ1 same. Otherwise, increase µ1 (Ex: µ1

→ 2µ1)
3) If bI,rTbI,r = L or bI,rTbI,r ≥ bII,r−1TbII,r−1 + β2, (im-
proved solution), where β2 is a proper positive threshold value (Ex:
L/20), keep the value of µ2 same. Otherwise, increase µ2 (Ex: µ2

→ 2µ2)
4) Solve (10) for {WII,r,bII,r} while fixing {WI,bI} as
{WI,r,bI,r}.
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5) If rank(WII,r) = 1 or λ1(W
II,r) ≥ λ1(W

I,r) + β1 keep the
value of µ1 same. Otherwise, increase µ1.
6) If bII,rTbII,r = L or bII,rTbII,r ≥ bI,rTbI,r + β2, keep the
value of µ2 same. Otherwise, increase µ2.
7) If r = r1 where r1 is a certain maximum number of iterations for
Phase 1, go to the Phase 2.
Phase 2:
8) Set bI = bII as binary vectors obtained from bII,r1 by quantiz-
ing it such that the largest L values are set to one whereas the rest
are zero. Repeat Phase 1 without antenna selection where bI and
bII are now fixed.
9) Terminate if the maximum iteration number, r2, is reached or rank
one solution is obtained. Take the beamforming weight vector as the
principal eigenvector of WI or WII depending on the termination.

It can be easily shown that the worst case complexity of MBAS at
each iteration using interior point methods is O(

√
GM +M + 1

log(1/ε)) iterations where ε is the accuracy of the solution at termi-
nation [1]. Simulation results show that the average number of total
semidefinite programming (SDP) problems for MBAS algorithm is
less than 15. Hence the complexity of the proposed algorithm is less
than the alternatives [3].

5. SIMULATION RESULTS
In this part, proposed method, MBAS, is evaluated and its perfor-
mance is compared with the method in [3]. Both methods are im-
plemented with a convex programming solver CVX [17]. Rayleigh
fading channels with unit variances are considered. The total num-
ber of antennas is M = 16. SINR threshold and noise variance for
each user are the same and taken as γi = 1 and σ2

i = 1 respec-
tively in accordance with [3]. The average of 100 random channel
realizations is presented for each experiment. The parameters of the
algorithm, MBAS, are selected as P = 100, β1 = P/20 = 5,
β2 = L/20, r1 = 2, r2 = 50. Initial values of µ1 and µ2 are taken
as µ1 = µ2 = 0.001. Proposed method returned rank=1 solution
for all the experiments even though there is no guarantee for such an
outcome.

In the first experiment, single group multicasting scenario is con-
sidered where there are N = 20 users. L out of M = 16 antennas
are selected. In fixed antenna case, M = L antennas are used. As
it is seen in Fig. 1, proposed method results significantly less power
compared to [3]. The difference increases by the number of selected
antennas and approaches almost 2.5 dB.

In the second experiment, two-group multicasting scenario is
considered where there are 10 users in each multicast group. Fig.
2 shows the total transmitted power for different cases and methods.
Proposed method performs significantly better than [3]. The differ-
ence between two methods is approximately 3 dB. Proposed method
for fixed antenna case performs better than [3] even when it uses the
antenna selection scheme. Antenna selection is effective especially
when the number of selected antennas is relatively small.

In Fig.3, average number of SDP problems for the proposed al-
gorithm is presented for different number of users and selected an-
tennas, L, by averaging 100 different channel realizations. It can be
seen that the average number of SDP problems is almost indepen-
dent of L. When there are N = 40 users, there is a slight increase
in the number of SDP’s. For all scenarios, the average number of
SDP’s is less than 15, which shows that the algorithm terminates in
a small number of iterations.

6. CONCLUSION
In this paper, joint multicast beamforming with antenna selection
is considered. An equivalent biconvex formulation is obtained by

embedding the rank condition and antenna selection such that exact
penalty approach is employed to obtain an effective solution. The
equivalent problem is solved iteratively by using alternating maxi-
mization where a convex problem is solved at each iteration. This
approach is guaranteed to converge and has been shown to perform
significantly better than the alternatives.
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Fig. 1. Total transmitted power versus number of selected antennas
for single group multicasting scenario.
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Fig. 2. Total transmitted power versus number of selected antennas
for two-group multicasting scenario.
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