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ABSTRACT

The array polynomial is the z-transform of the array weights for
a narrowband planewave beamformer using a uniform linear array
(ULA). Evaluating the array polynomial on the unit circle in the
complex plane yields the beampattern. The locations of the poly-
nomial zeros on the unit circle indicate the nulls of the beampattern.
For planewave signals measured with a ULA, the locations of the en-
semble MVDR polynomial zeros are constrained on the unit circle.
However, sample matrix inversion (SMI) MVDR polynomial zeros
generally do not fall on the unit circle. The proposed unit circle
MVDR (UC MVDR) projects the zeros of the SMI MVDR polyno-
mial radially on the unit circle. This satisfies the constraint on the
zeros of ensemble MVDR polynomial. Numerical simulations show
that the UC MVDR beamformer suppresses interferers better than
the SMI MVDR and the diagonal loaded MVDR beamformer and
also improves the white noise gain (WNG).

Index Terms— adaptive beamformer, MVDR, array polyno-
mial

1. INTRODUCTION

Beamformers enhance signals arriving at an array from a desired
look direction while suppressing interferers and noise. Conventional
beamformers (CBFs) using a delay-and-sum approach have limited
ability to suppress loud interferers which can leak through the high
sidelobes of the CBF beampattern and mask weaker signal of in-
terest. Adaptive beamformers (ABF) place notches in the direction
of interferers to suppress the interferer power at the output and im-
prove signal-to-interferer-plus-noise ratio (SINR) [1]. The minimum
variance distortionless response (MVDR) beamformer is one of the
most commonly used ABFs [2]. In practice, the ensemble covariance
matrix (ECM) is unknown so the sample covariance matrix (SCM)
replaces the ECM to compute the ABF weights. The resulting ABF
is known as the Sample Matrix Inversion (SMI) MVDR beamformer
[1].

The beampattern defines the spatial response of a beamformer
[1]. The beampattern of a beamformer using a ULA can be repre-
sented as an array polynomial by taking z-transform of beamformer
weights [3]. This is analogous to the system function representation
of a discrete time (DT) LTI filter by taking z-transform of its impulse
response [4]. As with DT LTI filters, beamformers also have a pole-
zero representation in the complex plane and continuing the analogy,
the beampattern is obtained by evaluating the array polynomial on
the unit circle. The array polynomial zeros generally correspond to
the beampattern notches but when the zeros fall on the unit circle
they result in perfect notches or nulls.
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The zeros of an ensemble MVDR beamformer polynomial for
narrowband planewave are constrained on the unit circle. However,
the SMI MVDR array polynomial zeros generally do not lie on the
unit circle. A new beamformer is developed by radially projecting
the SMI MVDR zeros on the unit circle and satisfying the constraint
on the ensemble MVDR zeros. The proposed unit circle MVDR
(UC MVDR) beamformer suppresses interferers better than the SMI
MVDR and the diagonal loaded MVDR beamformer and at the same
time improves white noise gain (WNG) performance.

Prior work involving the use of array polynomial representation
for beamforming includes work by Steinberg [5]. Steinberg dis-
cusses the polynomial representation of radiation pattern of uniform
antenna arrays and presents an approach to synthesize radiation pat-
terns by manipulating zero locations on the unit circle. The methods
presented in [5] are limited to ensemble cases. Several proposed
adaptive notch filters for DT signals constrain the filter poles and
zeros to render ’sharper’ notches in their frequency response [6–8].
However these approaches are based on DT IIR filters while beam-
formers with ULAs are analogous to DT FIR filters.

The remainder of this paper is organized as follows: Sec. 2 re-
views the signal model, MVDR beamformer and the metrics used
to evaluate beamformer performance. Sec. 3 develops the polyno-
mial representation for ULA beamformers and discusses zero loca-
tions for the MVDR and SMI MVDR beamformers. Sec. 4 presents
the UC MVDR beamformer algorithm. Sec. 5 discusses the simula-
tion results comparing the performance of the UC MVDR with SMI
MVDR and DL MVDR.

2. BACKGROUND

The narrowband planewave data measured on an N element ULA is
modeled as an N × 1 complex vector,

x =

D∑
i=1

aivi + n (1)

where D is the number of planewave signals, ai is ith signal am-
plitude and n is the noise sample vector. The amplitude is mod-
eled as a zero mean complex circular Gaussian random variable, i.e.,
ai ∼ CN (0, σ2

i ) and the noise is assumed to be spatially white with
complex circular Gaussian distribution, i.e., n ∼ CN (0, σ2

wI). The
complex vector vi is the narrowband planewave array manifold vec-
tor defined as,

vi = [1, e−j(2π/λ)dui , e−j(2π/λ)2dui , . . . , e−j(2π/λ)(N−1)dui ]T,

where ui = cos(θi) and θi is the ith signal direction, λ is the wave-
length, d is the ULA inter element spacing and [·]T denotes trans-
pose. In the sequel, signal direction will be represented in terms of

2484978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



u. Assuming the D signals to be uncorrelated in (1), the ECM is,

Σ =E[xxH] =

D∑
i=1

σ2
i viv

H
i + σ2

wI. (2)

where σ2
i is ith signal power and σ2

w is the noise power at each
sensor.

The narrowband planewave MVDR beamformer weight vector
for a ULA is,

wMVDR =
Σ−1v0

vH
0 Σ−1v0

, (3)

where v0 is the array manifold vector for the look direction u0 =
cos(θ0). Computing the MVDR weights in (3) requires knowledge
of the ECM but in practical applications the ECM is unknown a
priori. Consequently, the MVDR ABF is approximated by the SMI
MVDR computed by replacing the ECM Σ in (3) with the SCM,

S =
1

L

L∑
l=1

xlx
H
l

where the L is the number of data snapshots and xl is the data snap-
shot vector in (1). In practice, the number of data snapshots avail-
able to compute the SCM are limited either due to physical or sta-
tionarity constraints of the environment [9][10]. When the number
of snapshots is on the order of the number of array elements, i.e.,
N ≈ L, the SCM is ill-conditioned for inversion. The resulting SMI
MVDR beamformer suffers from a distorted beampattern with high
sidelobes and subsequent loss in SINR [11][12]. In this scenario,
a common approach is to apply diagonal loading (DL) to the SCM
to get Sδ = S + δI where δ is the DL factor. This results in the
DL MVDR beamformer. DL makes SCM inversion stable, provides
better sidelobe control and improves beamformer WNG [13]. An ap-
propriate choice for the DL factor requires knowledge of the signal
and the interference plus noise power levels which are unknown in
practice. Some of the proposed methods to choose DL factor are ei-
ther ad-hoc in nature or require numerical solutions to optimization
problems [13].

The beampattern defines the complex gain due to the beam-
former on a unit amplitude planewave from direction u = cos(θ),
i.e.,

B(u) = wHv(u) =

N−1∑
n=0

w∗
n

(
e−j

2π
λ
du
)n

(4)

where (·)∗ denotes conjugate and−1 ≤ u ≤ 1 is the direction range
of the beampattern. In the presence of strong interfering signals,
a beamformer’s ability to suppress the interferers is quantified by
the notch depth (ND) defined as ND = |B(u1)|2, where u1 is the
interferer direction. ABFs aim to improve SINR by adjusting the
ND and location based on interferer power and direction.

White noise gain (WNG) is defined as the array gain when the
noise is spatially white. Assuming unity gain in the look direction,
WNG = ||w||−2 where || · || denotes the Euclidean norm [1]. WNG
is also a metric for beamformer robustness against mismatch [14].
The CBF has the optimal WNG which is equal to the number of
array sensors N [15].

3. BEAMFORMER POLYNOMIAL

The beampattern of a narrowband planewave beamformer with ULA
can be represented as a complex polynomial [3][5]. For a standard

ULA with d = λ/2,

B(u) =

N−1∑
n=0

w∗
n(e−jπu)n. (5)

Letting z = ejπu in (5), we get the array polynomial

P(z) =

N−1∑
n=0

w∗
nz

−n = Z(wH). (6)

P(z) is an N − 1 degree polynomial in the complex variable z with
beamformer weights (w∗

n) as its coefficients. Eq. (6) is in the form
of the z-transform of the conjugate beamformer weights [4, Chap.3].
This polynomial representation maps the bearing variable u into the
complex plane. The phase of the complex variable is related to the
bearing variable as arg(z) = ω = πu. Evaluating (6) on the unit
circle {z ∈ C, |z| = 1} returns it to (5). Hence the zeros of P(z) on
the unit circle correspond to nulls of the beampattern.

The MVDR polynomial is obtained as

PM (z) = Z(wH
MVDR) = Γ

N−1∏
n=1

(1− ζnz−1), (7)

where Γ is a scaling term and ζn are the ensemble MVDR zeros.
Figure 1 shows MVDR zeros for an example case of N = 11 ele-
ment ULA and a single interferer at u1 = 3/N . All MVDR zeros
in Figure 1 are on the unit circle. In fact the MVDR ensemble zeros
are always constrained on the unit circle for planewave beamforming
using a ULA. The unit circle constraint was initially discovered and
proved by Seinhardt and Guerci but the result does not appear to be
widely known [16].

However, the SMI MVDR zeros are perturbed from the ensem-
ble MVDR zero locations and are randomly located on the complex
plane about the ensemble MVDR zero locations. The SMI MVDR
zeros do not necessarily lie on the unit circle and they correspond to
notches in the SMI MVDR beampattern. Any zeros that fall closer to
the origin or far outside the unit circle have negligible contribution
to beampattern [4, Chap. 5]. The following section describes how
the SMI MVDR beamformer can be modified by moving the sample
zeros to the unit circle following the constraint on ensemble zeros.

4. UNIT CIRCLE MVDR BEAMFORMER

The unit circle MVDR (UC MVDR) beamformer projects the SMI
MVDR zeros radially on the unit circle consistent with the con-
straint on the ensemble MVDR zeros. By placing zeros on the unit
circle, the UC MVDR beampattern guarantees nulls in the direc-
tion corresponding to the zeros. Figure 2 describes the UC MVDR
beamformer algorithm. The algorithm begins from the SMI MVDR
weights wSMI computed using the SCM. The z-transform of the el-
ements of wH

SMI gives the SMI MVDR polynomial

PS(z) = G

N−1∏
n=1

(1− ξnz−1),

where G is a scaling factor, ξn = rne
jωn are the SMI MVDR zeros

and the rns are generally not unity. Each SMI MVDR zero ξn is
moved radially to the unit circle to obtain the UC MVDR zeros ξ̂n =
ejωn . An exception is made when the SMI MVDR zeros fall within
the CBF main-lobe region in the complex plane. Such zeros are
moved to the CBF first-null location on the unit circle to protect the
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Fig. 1. Zero locations of MVDR beamformer usingN = 11 element
ULA.

main-lobe. A unit circle polynomial PUC(z) is defined using the
new unit circle zeros ξ̂ns,

PUC(z) =

N−1∏
n=1

(1− ξ̂nz−1) =

N−1∑
n=0

c∗nz
−1. (8)

The coefficients cns are the new beamformer weights. The resulting
beamformer will have beampattern nulls in the direction correspond-
ing to ξ̂n. Finally, the cns are scaled to ensure the beamformer has
unity gain in the look direction to satisfy the distortionless constraint
of a MVDR beamformer. The resulting UC MVDR beamformer
weight vector is wUC = c/|cHv0| where c = [c0, c2 . . . cN−1] and
v0 is the array manifold vector for look direction u0 = cos(θ0).
Since polynomial zero locations are invariant to coefficient scaling,
the UC MVDR beampattern will still have nulls in the same loca-
tions as PUC(z).

Figure 3 shows a representative example of zero locations and
beampattern of a UC MVDR compared with SMI MVDR beam-
former using N = 11 element ULA and L = 12 snapshots. A
single interferer is present at u1 = cos(θ) = 3/N . In Figure 3a,
the green diamond markers indicate the SMI MVDR zero locations
and the red circle markers indicate the UC MVDR zeros obtained
by moving the SMI MVDR zeros to unit circle. The correspond-
ing beampattern plots in Figure 3b show perfect notches and lower
sidelobes in the UC MVDR beampattern (solid red) in contrast to
shallow notches and higher sidelobes in the SMI MVDR beampat-
tern (dot-dash green).

5. SIMULATION RESULTS

Figure 4 compares the empirical CDF of output power in the in-
terferer direction for the UC MVDR beamformer against the SMI
MVDR and DL MVDR beamformers. The CDF curves are based
on 5000 Monte Carlo trials. The dashed vertical line represents the
ideal output power using the ensemble MVDR beamformer. The
ULA size was N = 11 and a single interferer was fixed at u1 =
cos(θ1) = 3/N for each trial. The sensor level INR was 40 dB. The
SCM was computed using L = 12 snapshots. The DL level was
set to keep the mean WNG for UC MVDR and DL MVDR beam-

1: Compute SCM : S = 1
L

N∑
n=1

xxH

2: Compute SMI MVDR weights : wSMI = S−1v0/(v0S
−1v0)

3: PS(z) = Z(wH
SMI) = G

N−1∏
n=1

(1− ξnz−1) and ξn = rne
jωn

4: if |ωn| > 2π/N then
5: ξ̂n = ejωn

6: else if |ωn| ≤ 2π/N then
7: ξ̂n = ejsgn(ωn)2π/N

8: end if
9: Use ξ̂n to create new unit circle polynomial :

PUC(z) =
N−1∏
n=1

(1− ξ̂nz−1) =
N−1∑
n=0

c∗nz
−n

10: Define : c = [c1, c2 . . . cN ]
11: UC MVDR weight : wUC = c/|cHv0|

Fig. 2. UC MVDR beamformer algorithm
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Fig. 3. Zero locations and beampattern for representative example
of SMI MVDR and UC MVDR beamformer using N = 11 element
ULA for L = 11 snapshots.
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Fig. 4. Comparison of interferer output power empirical CDF be-
tween UC MVDR, SMI MVDR and DL MVDR beamformers with
N = 11 element ULA and L = 12 snapshots.

former equal. Over the observed power output range, the UC MVDR
beamformer has higher probability of achieving lower output power
compared to both SMI MVDR and DL MVDR beamformers. The
median output power of UC MVDR was more than 20 times lower
than SMI MVDR and about 10 times lower than DL MVDR beam-
former. Thus the UC MVDR suppresses the interferer better than
both SMI MVDR and DL MVDR beamformers. Moreover, the UC
MVDR has another advantage over the DL MVDR because it does
not require an a priori choice of a tuning parameter like the DL fac-
tor.

Figure 5 compares the WNG for the UC MVDR against the SMI
MVDR beamformer for same Monte Carlo experiment used to gen-
erate Figure 4. The optimal WNG for the experiment is 11. The
histograms in Figure 5a show the improvement in WNG using the
UC MVDR compared to SMI MVDR beamformer for same set of
data. The dashed vertical denotes the ensemble WNG of 10.473.
The UC MVDR beamformer has a higher probability of achieving
higher WNG with an average WNG of 5.672 compared to an aver-
age WNG of 2.629 using the SMI MVDR beamformer. The scatter
plot in 5b shows that the UC MVDR has a higher WNG than SMI
MVDR beamformer in each trial instance except for small number
of cases (bottom left corner in Figure 5b) where both beamformers
have low WNG.

6. CONCLUSION

This paper presents the UC MVDR beamformer derived by moving
the SMI MVDR zeros to lie on the unit circle. By placing zeros
on the unit circle, the UC MVDR beampattern has perfect notches
and lower sidelobes when compared to the SMI MVDR beampat-
tern. Numerical simulations show that the UC MVDR beamformer
suppresses interferers better than the SMI MVDR and DL MVDR
beamformers and has higher average WNG than the SMI MVDR
beamformer for the single interferer case.
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