
Generalised Array Reconfiguration for Adaptive
Beamforming by Antenna Selection

Xiangrong Wang?,†, Elias Aboutanios? and Moeness G. Amin†
?School of Electrical Engineering, University of New South Wales, Sydney, Australia 2052.

†Center for Advanced Communications, Villanova University, PA 19085, USA.
Email: x.r.wang@unsw.edu.au, elias@ieee.org, moeness.amin@villanova.edu.

Abstract—In this paper, we consider antenna selection and
array reconfiguration in the presence of multiple interferences
based on the spatial correlation coefficient (SCC) which charac-
terizes the spatial separation between the desired signal and inter-
ference subspace. Minimizing the SCC increases the separation
between these two subspaces and leads to enhanced beamforming
performance. We formulate this problem as a difference of two
concave functions, which we solve through the convex-concave
procedure (CCP). We derive the lower bound of the SCC as
a function of the number of selected antennas which permits
us to determine the required number for achieving the desired
performance. We suggest two algorithms for implementing the
antenna selection and present simulation results to validate the
effectiveness of the proposed strategy.

Index Terms—Antenna selection, Difference of convex func-
tions, Correlation Measurements, Difference of convex sets.

I. INTRODUCTION

Multiple antenna receivers are effective tools for interfer-
ence nulling, as they are capable of spatial filtering, making
it possible to receive a desired signal from a particular direc-
tion while simultaneously blocking interferences from other
directions [1], [2]. The performance of adaptive beamforming
is not only dependent on the implemented algorithm, but also
the array geometry [3]. Since each antenna requires a separate
receiver, the overall cost of a large array is dominated by the
cost of active elements and may become prohibitively expen-
sive. It is therefore important to maximize the beamforming
performance for a given number of antennas (that is cost)
by adapting the array geometry. In order to achieve practical
array reconfigurability, we propose in this work a strategy of
selecting a subarray over a full layout using Radio Frequency
(RF) switches.

The problem of antenna selection for adaptive beamforming
was considered in [4], [5], but that work dealt only with
the single interference case, which significantly limits its
range of practical applications. In this paper, we consider
antenna selection and array reconfiguration in the general case
of multiple interferences. We derive the spatial correlation
coefficient (SCC), which characterizes the spatial separation
between the desired signal and interference subspace. Under
the assumption of strong interferences, the output signal to
interference plus noise ratio (SINRout) is determined by the
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squared SCC value with a fixed number of antennas. In order
to make the antenna selection based on the SCC in the multi-
interference case tractable, we express the SCC as a fraction of
two matrix determinants. Then the objective function in terms
of the SCC becomes a difference of two concave functions,
which is non-convex optimization. We solve this problem by
utilising the convex-concave procedure (CCP) [6]. We first
obtain the lower bound of the optimum SCC value and use it
to determine the number of selected antennas that gives the
desired trade-off between the performance and cost.

Having calculated the suitable number of antennas to be
selected, we need to develop a polynomial-time algorithm
for solving antenna selection problem. Usually, the binary
constraint, x ∈ {0, 1}N , is replaced by a convex interval,
x ∈ [0, 1]N , and various strategies are applied to obtain
approximate binary solutions. In [7] for instance, the largest
K entries are set to one and a local search is employed
to find the global optimum. In [8], a reweighted l1-norm is
utilised to promote the solution sparseness. Other centralized
and distributed methods have also been proposed in [9] to
solve this binary constrained problem. Although the resulting
solutions are sparse, these methods do not guarantee binary
entries. In this paper, we adapt the Difference of Convex Sets
(DCS) and Correlation Measurement (CM) methods of [4] to
obtain solutions for the multi-interference case.

The remainder of the paper is organized as follows: In
section 2, we derive generalized expressions of the SCC,
with the second incorporating antenna selection. In section
3, we formulate the lower bound of the SCC and suggest
two optimization algorithms for solving selection problem. In
section 4 we present simulation results, while the last section
gives some concluding remarks.

II. GENERALIZED SPATIAL CORRELATION COEFFICIENT

In addition to single interference cases [10], we formulate
the SCC to deal with multiple interferences in what follows.

A. Matrix-Vector Expression

Let the direction of arrival (DOA) be specified by (θ, φ) with
θ and φ being the elevation and azimuth angles respectively.
Then the u-space DOA parameter corresponding to (θ, φ) is
defined as u = [cos θ cosφ cos θ sinφ]T , where T is the
transpose operation. Assume the number of antennas is N
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and that the matrix P = [p1,p2, ...,pN ]T ∈ RN×2 contains
the coordinates pn = [xn, yn]

T of the antenna elements for
n = 1, · · · , N . Suppose the desired signal has a DOA us and
that a total of L interferences have DOAs uj , j = 1, · · · , L
respectively. Then the spatial steering vectors are

s = ejk0Pus , vj = ejk0Puj , j = 1, · · · , L, (1)

where k0 = 2π/λ is the wavenumber and λ is the wavelength.
Under the assumption that the interferences are uncorrelated
with one another and with the noise, the covariance matrix of
the interference plus noise becomes,

Rn = σ2I +
L∑

j=1

σ2
j vjvHj , (2)

where I ∈ RN×N is the identity matrix and σ2 the thermal
noise power and σ2

j , j = 1, · · · , L the power of the jth inter-
ference. Now we arrange the desired signal and L interference
steering vectors into the matrices,

VI = [v1, v2, · · · , vL], Vs = [s, v1, v2, · · · , vL]. (3)

Putting ΣI = diag[σ2
1 , σ

2
2 , · · · , σ2

L], we can write the interfer-
ence plus noise covariance matrix into a more concise form,

Rn = σ2I + VIΣIVH
I . (4)

Applying the Woodbury matrix identity to the inverse noise
covariance matrix, Rn, yields,

R−1n =
1

σ2
(I− 1

σ2
VI(Σ

−1
I +

1

σ2
VH

I VI)
−1VH

I ). (5)

Now let us assume that the interferences are much stronger
than white noise, i.e. σ2

j � σ2,∀j, then Eq. (5) can be further
simplified as

R−1n ≈ 1

σ2
(I− VI(VH

I VI)
−1VH

I ). (6)

We see that, when the interference to noise ratio (INR) is high,
R−1n approximates the interference nullspace. Accordingly, the
optimum minimum variance distortionless response (MVDR)
adaptive beamforming filter, [11],

wopt = γR−1n s, (7)

becomes the interference eigencanceler proposed in [12].
Here γ is a constant that does not affect the SINRout. The
relationship between the optimum beamforming filter wopt,
the interference subspace VI and the interference nullspace
R−1n is shown in Fig. 1. The steering vector of the desired
signal s can be decomposed into two orthogonal components:
the interference subspace component sv and the nullspace
component sn, i.e. s = sv+ sn with sv = (VI(VH

I VI)
−1VH

I )s
and sn = (I− VI(VH

I VI)
−1VH

I )s respectively. The optimum
beamforming filter, i.e. eigencancelor weight vector wopt, is
along the interference nullspace direction sn. We define the
SCC as the absolute value of the cosine of the angle between
the desired signal s and interference subspace component sv ,

|α| = | cosϑ| =
∣∣∣∣ sHsv
‖s‖2‖sv‖2

∣∣∣∣ . (8)

Fig. 1. The relationship between the optimum beamforming filter wopt, the
interference subspace VI and the nullspace R−1

n .

Here the length of s is ‖s‖2 =
√
N under the assumption of

isotropic antennas. Since the SINRout is directly related to the
squared value of the SCC, substituting the expression of sv
into Eq. (8) and taking the squared value yields

|α|2 =

∣∣∣∣ sHsv√
N‖sv‖2

∣∣∣∣2 =

∣∣sHVI(VH
I VI)

−1VH
I s
∣∣2

N‖VI(VH
I VI)−1VH

I s‖22
,

=
1

N
sHVI(VH

I VI)
−1VH

I s. (9)

Finally, the SINRout becomes

SINRout = σ2
ssHR−1n s = SNR ·N(1− |α|2), (10)

where σ2
s denotes the power of the desired signal and SNR

is the signal-to-noise ratio. Eq. (10) shows that the SINRout
of the interference eigencancelor depends on two factors: the
number of available antennas N and the squared SCC value
|α|2. When the number of selected antennas is fixed, the per-
formance can be improved by changing the array configuration
to reduce the SCC value. Thus the SCC characterizes the effect
of the array geometry on the beamforming performance and
is an effective metric for optimum subarray selection.

B. Determinant Expression
The matrix-vector expression of the SCC given in Eq. (9) is

not a convenient form for antenna selection. Thus we derive
here another compact formula of the SCC in terms of matrix
determinants.

Let the interference cross-correlation matrix DI ∈ CL×L be

DI = VH
I VI

=


ρ11 ρ12 · · · ρ1L
ρ21 ρ22 · · · ρ2L
· · · · · · · · · · · ·
ρL1 ρL2 · · · ρLL

 , (11)

where the entry ρij = vHi vj for i, j = 1, ..., L. The de-
sired signal plus interferences cross-correlation matrix Ds ∈
C(L+1)×(L+1) is

Ds =


ρss ρs1 · · · ρsL
ρ1s ρ11 · · · ρ1L
ρ2s ρ21 · · · ρ2L
· · · · · · · · · · · ·
ρLs ρL1 · · · ρLL

 ,
=

[
N sHVI

VH
I s DI

]
, (12)

2480



where the entry ρsj = sHvj for j = 1, ..., L. Let CI , the
cofactor matrix of DI , be

CI =


C11 C12 · · · C1L

C21 C22 · · · C2L

· · · · · · · · · · · ·
CL1 CL2 · · · CLL

 , (13)

where Cij is the cofactor of ρij , i, j = 1, ..., L. Then the
inverse of DI can be expressed as

D−1I =
1

|DI |
CT

I , (14)

where |DI | means determinant of the matrix DI . The deter-
minant of Ds can be written as

|Ds| = ρss|DI |+
L∑

i=1

ρsiCsi

= ρss|DI | −
L∑

i=1

L∑
j=1

ρsiCjiρjs

= ρss|DI | − sHVICT
I VH

I s, (15)

where Csi is the cofactor of ρsi for i = 1, ..., L. Here we have
also used the fact that |DI | is the cofactor of ρss. Thus we
have that

sHVICT
I VH

I s = ρss|DI | − |Ds| = N |DI | − |Ds|. (16)

Substituting Eqs. (11) and Eq. (14) into Eq. (9) yields,

|α|2 =
1

N
sHVID−1I VH

I s =
1

N |DI |
sHVICT

I VH
I s, (17)

Proceeding to substitute Eq. (16) into Eq. (17), the expression
of the SCC can be rewritten as

|α|2 =
1

N |DI |
sHVICT

I VH
I s = 1− |Ds|

N |DI |
. (18)

The SCC expression of the multi-interference case shown in
Eq. (9) reduces for L = 1 to that of the single interference case
given by Eq. (11) in [4]. Furthermore, when these interferences
are mutually orthogonal, i.e., vHi vj = 0, i, j = 1, · · · , L, i 6=
j, we have

|α|2 =
1

N2
sHVIVH

I s =
L∑

i=1

|sHvi|2

(sHs)(vHi vi)
=

L∑
i=1

|αi|2, (19)

due to the fact that VH
I VI = NI. Here αi is the SCC value

between the desired signal and the ith interference. Thus the
squared SCC value in the multi-interference case is the sum of
squared SCC value of each interference in the special scenario.

III. ANTENNA SELECTION FOR ADAPTIVE BEAMFORMING

In this section, we first incorporate antenna selection into
the SCC expression and then formulate the lower bound of the
SCC in order to determine the number of selected antennas.
Finally, we give two algorithms for antenna selection.

A. SCC with antenna selection

We implement antenna selection on the derived SCC param-
eter. Define the binary selection vector x ∈ {0, 1}N with “one”
meaning the corresponding antenna is selected and “zero”
meaning discarded. Then, the two cross-correlation matrices
of the selected subarray can be expressed as

DI(x) = VH
I diag(x)VI , Ds(x) = VH

s diag(x)Vs. (20)

Thus, the SCC of the selected subarray can be written as

|α|2 = 1− |Ds(x)|
K|DI(x)|

= 1− |VH
I diag(x)VI |

K|VH
s diag(x)Vs|

, (21)

where K is the number of selected antennas. Thus the antenna
selection problem in terms of minimizing the SCC is

min 1− |Ds(x)|
K|DI(x)|

,

s.t. x ∈ {0, 1}N , 1T x = K. (22)

where 1 ∈ RN with all entries being one. Since both DI(x)
and Ds(x) are positive definite and the logarithm function
is monotonically increasing, Eq. (22) is equivalent to the
following problem by ignoring the constant term K,

min log(|DI(x)|)− log(|Ds(x)|),
s.t. x ∈ {0, 1}N , 1T x = K. (23)

The objective function of Eq. (23) is the difference of two
concave functions and belongs to D.C. Programming [13].

B. Lower Bound on Optimal SCC

Let us define the feasible set S = {x ∈ {0, 1}N : 1T x =
K}, which comprises the extreme points of the polytope D =
{x : 0 � x � 1, 1T x = K}. In order to obtain a lower bound
of the optimal SCC value, we relax the binary constraints by
replacing the feasible set S by the polytope D, i.e.

min log(|DI(x)|)− log(|Ds(x)|),
s.t. x ∈ D. (24)

According to [14], [15], the global optimum solution of a
D.C. programming is on the edge of the polytope D, which is
sparse but not necessarily binary. A convex-concave procedure
(CCP) is adopted here to solve the D.C. Programming [16],
which is proven to converge to a KKT solution in [17]. Now,
the concave function f(x) = log(|DI(x)|) is approximated
iteratively by its first-order Taylor decomposition as

f(x) ≈ f̂(x) = f(xk) + Of(xk)T (x− xk). (25)

The jth entry of the gradient Of(xk) is

Ofj(xk) = tr
{

D−1I (xk)(Vj
IVjH

I )
}
, (26)

here the operator tr{•} takes the trace of the matrix • and Vj
I

is the jth row of VI . Thus the lower bound of the optimal SCC
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value can be obtained by a sequence of convex optimizations,
where the kth iteration is,

min Of(xk)T x− log(|Ds(x)|),
s.t. x ∈ D. (27)

The termination condition can be chosen as the distance
between two successive solutions, i.e. ‖xk+1−xk‖2, less than
a predetermined threshold value. After obtaining the lower
bound of the SCC, the upper bound of the SINRout can be
calculated through Eq. (10). A trade-off curve between the
performance and the cost can then be plotted to determine the
suitable number K as shown in [4]. Subsequently, both the
CM and DCS methods in [4] can be modified and adapted to
select an optimum subset of K antennas here. Let us take the
DCS as an example, the problem is formulated as,

min Of(xk)T x− log(|Ds(x)|) + µ(1− 2xk)T x,
s.t. x ∈ D. (28)

Here µ is a trade-off parameter that compromises between the
minimization of SCC value and the solution sparseness. For
the CM method, all antennas are switched on initially and a
backward search is implemented to switch off the antenna that
gives the largest SCC value in Eq. (21) in each iteration until
K antennas remain.

IV. SIMULATION RESULTS

In the following, we present simulation results to show
the advantage of our approach. The desired signal is fixed at
θs = 0.1π, φs = 0.2π radian. We consider two scenarios: In
the first, the desired signal is close to the interference subspace,
whereas in the second, the two are well separated. In the first
scenario, the first and second interferences are arriving from
θ1 = 0.15π, φ1 = 0.25π radian and θ2 = 0.2π, φ2 = 0.3π
radian. In the second scenario, the two interferences arrive
from θ1 = 0.3π, φ1 = 0.4π radian and θ2 = 0.35π, φ2 = 0.3π
radian. We adopt a 4 × 4 square array as the full layout
and present the trade-off curve between the output SINR and
cost in Fig. 2 to illustrate the determination of the number
of selected antennas. The number K is changing from 3 to
16 in steps of 1. We calculate the normalised output SINR
and computational cost by taking the entire full array as
a reference, where the computational cost is of order K3.
Observe that using an 8-antenna subarray saves 87.5% of
computational cost with only 1dB performance degradation
in the close scenario and 2.8dB SINR loss in the far scenario.
This is a significant saving in computational load for a modest
performance loss. Note that this does not take into account the
additional hardware saving due to the reduction in the number
of front ends, which is equal to the reduction in the number
of antennas.

Next, we select 10 antennas from a 20-antenna uniform lin-
ear array for enhanced interference nulling. The desired signal
arrives from 60◦ in elevation with SNR being −20dB and four
interferences coming from 45◦, 55◦, 65◦, 70◦ respectively with
INR all being 30dB. We select two optimum subarrays through
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Fig. 2. The trade-off curve between the performance and the computational
cost for both far and close scenarios.
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(a) 10−antenna optimum subarray 1 selected by subspace based SCC
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(c) 10−antenna random subarray 3 with two sensors at two ends

Fig. 3. The structure of three 10-antenna subarrays.
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Fig. 4. MVDR beampatterns of three 10-antenna subarrays as shown in Fig.
3. The number of time snapshots is 100 and 1000 Monte Carlo runs are used.

minimizing the proposed subspace based SCC and the sum of
SCC values in Eq. (19) ignoring the fact that the interferences
are not orthogonal with each other as shown in Fig. 3. We also
select a third subarray with two antennas fixed at two ends and
other eight randomly spaced in between for comparison. The
MVDR beampatterns of the three arrays are shown in Fig. 4 by
averaging 1000 Monte-Carlo simulations. We can see that the
first subarray, denoted as “sub1”, produces deeper nulls than
the other two subarrays, but exhibits nearly same mainlobe
width and peak sidelobe level.

V. CONCLUSION

In this paper, we studied reconfigurable adaptive antenna
arrays by antenna selection in multi-interference cases. We
generalized the SCC and formulated the problem as a differ-
ence of two concave functions. We then employed the CCP to
solve the problem and suggested two combinatorial optimiza-
tion algorithms to select optimum antennas. Simulation results
validate the effectiveness of the proposed method.
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