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ABSTRACT

The paper investigates combining Compressive Sensing (CS)
with the robust Capon beamformer (RCB) for the purpose of med-
ical ultrasound image formation with a much reduced number of
samples compared to those used in current state-of-art ultrasound.
The proposed CS algorithm uses wave atom dictionary as a low di-
mension projection, a Bernouli random matrix as a sensing matrix
and a regularized-l1 optimization technique for recovery. The recon-
structed signals are then pre-processed before using the RCB tech-
nique augmented with spatial smoothing and diagonal loading. This
approach is demonstrated through simulations, wire phantom and in
vivo cardiac data with a reduction of up to 1/8 in the processed data
rate and ultrasound images of similar perceived quality.

Index Terms— Compressive Sensing, Robust Capon Beam-
forming, Wave Atom, Delay-and-Sum.

1. INTRODUCTION

Diagnostic ultrasound acquires images from the body tissues by
sending acoustic beams and collecting the scattered waves by an
array of transducers, which are then processed by a beamform-
ing technique to increase the signal-to-noise ratio (SNR). Being
portable, real-time, risk free and relatively cheap, ultrasound imag-
ing is modality of common choice for physicians. However, in
ultrasound, sometimes there is the need for a large number of trans-
ducers (sometimes as high as a couple of thousands) producing
several hundreds of frame rate per second, each consisting of several
of hundreds of image lines [1]. Therefore, they have to process a
large amount of data with high quality. Delay-and-Sum (DAS) [2] is
a preferred beamforming method in current ultrasound machines. In
the DAS approach, relevant time-of-flights from each transducer el-
ement to each point in the region of interest (ROI) are compensated
and then a summation is performed on all the aligned observations to
form the image. The DAS beamformer is independent of data with
fixed weights, therefore, it provides lower resolution and worse in-
terference suppression capability as compared to the data-dependent
techniques like the Capon beamformer [3]. A typical reason for not
using adaptive beamfomers in ultrasound is the mismatch between
the presumed and the actual array responses due to imprecise knowl-
edge of the transducer positions resulting in signal cancellation in
situations where this mismatch is not addressed properly [4]. So,
applying Capon to the ultrasound needs considerable changes in
order to adapt it to this complex environment.

Compressive sensing (CS) approaches provide an alternative to
the classical Nyquist sampling framework and enable signal recon-
struction at lower sampling rates [5]. The idea of CS as proposed
by Donoho is to merge the compression and sampling steps, i.e.,
“why to go through so much effort to acquire all the data when
most of what we acquire will eventually be thrown away” [6]. In
recent years, the area of CS has branched out to a number of new

fronts and has worked its way into several application areas, such
as radar, communications, and ultrasound imaging. Eldar and her
colleagues published extensively and profoundly in applying the CS
theory to ultrasound imaging [7–9]. In all of these works, the DAS
is considered as the basis for image reconstruction and the Fourier
domain is selected as the sparse domain. When it comes to oscilla-
tory signals like ultrasound waves, wave atom decompositions have
been shown to have significantly sparser solution than other existing
methods [10]. Wave atom for ultrasound has been recently studied
in [11] but the method was tested using simulations and not real data.
Further, the DAS is applied for image reconstruction and a basis pur-
suit (BP) problem [12] is used for recovery.

The prime focus of this paper is to apply the wave atom based
CS to real diagnostic ultrasound data (to reduce the sampling rate)
in conjunction with the RCB (to enhance the beamforming quality).
As it is shown in Fig. 1, for low dimension signal acquisition, a
Bernouli random sensing matrix is used which reduces the sampling
rate of up to 1/8th of the original rate used by the Analog-to-Digital
Converters (ADCs). For sparse representation, a wave atom basis
is used. Generally speaking, wave atoms interpolates between di-
rectional wavelets [13] and Gabor [14] transforms. An optimization
problem based on regularized-l1-norm is solved using the NESTA
algorithm [15] to reconstruct the signals. Then, the reconstructed
signals are beamformed using the RCB technique augmented with
spatial smoothing and diagonal loading. Our simulated and exper-
imental results are presented in order to accelerate the acquisition
rate without dropping the quality in terms of image resolution.

The paper is organized as follows. Section 2 defines the notation
and derives the mathematical formulation for ultrasound received
signals in a multiple reflector environment followed by the formu-
lation of the DAS and the RCB technique in the frequency domain.
Section 3 provides the details of our applied CS technique based on
the wave atom dictionary. In Section 4, we compare the results of ap-
plying the CS technique and adaptive beamforming to both the sim-
ulated signals as well as data obtained from an ultrasound machine
using a wire phantom and in vivo cardiac data. Finally, section 5
concludes the paper.

2. SYSTEM MODEL AND IMAGE RECONSTRUCTION

In this model, the scatterers are assumed to be point reflectors pro-
ducing the field f(rs, t) = q(t)δ(rs) due to an excitation probe sent
by the transducers. The notation δ(rs) is the multidimensional Dirac
delta function at point rs with a strength of q(t) that depends on the
probing signal and the forward path attenuation. The emissions from
these reflectors are convolved with the Green’s function of the tissue
recorded by the transducers at rm, for (1 ≤ m ≤ M ) and produces
the following pressure field at the receiving elements.

p(rm, t′) = g(r, t|rm, t′)⊗ f(rs, t), (1)
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Fig. 1. Block diagram of the proposed overall system, including the random sensing matrix, signal reconstruction, and image formation
through the RCB method. In practice, Analog-to-Digital Converter (ADC) and the sensing block becomes one entity, sampling with much
lower rates than it is imposed by the Nyquist rate.

where the notation ⊗ stands for convolution. With c denoting the
propagation speed, the Green’s function at time t′ is [16]

g(r, t|rm, t′) =
1

4π|r− rm| δ(|r− rm|/c− (t− t′)). (2)

In the frequency domain, the recordings at transducers are denoted
by Ym(ωq), (1 ≤ m ≤ M ), for M transducers and Q frequency
bins (1 ≤ q ≤ Q) which can be presented as

Ym(ωq) = Hm(ωq)P (rm, ωq) +Nm(ωq), (3)

whereHm(ωq) is the frequency response of transducer m, P (rm, ωq)
is the pressure field at the receiver m in response to the transmitting
wave, and Nm(ωq) is the observation noise. In this model, the
receivers are assumed to be point transducers. In practice, however,
due to the limited size of the transducer, Hm(ωq) is also space
dependent. The pressure Pm(rm, ωq) is the multiplication of fre-
quency domain Green’s function of the medium as defined in (2) and
the source field generated from the scatterers at location rs denoted
by F (rs, ωq). Defining the frequency dependent near field array
steering vector a(rs, ωq) as a collection of Green’s functions (2) for
the receive array as

a(rs, ωq) � [
e−j(ωq/c)|rs−r1|

4π|rs − r1| · · · , e
−j(ωq/c)|rs−rM |

4π|rs − rM | ]T , (4)

the (M × 1) vector of received signals can be represented as

y(ωq) = (h(ωq)� a(rs, ωq))F (rs, ωq) + n(ωq), (5)

with y(ωq) = [Y1(ωq), · · · , YM (ωq)]
T . Similarly, the vector

n(ωq) is the stack vector of all the M observation noise Nm(ωq),
and the notation � is the Hadamard product of the two vectors. The
(M×1) vector h(ωq) = [α(r1, ωq)H1(ωq), · · · , α(rM , ωq)HM (ωq)]

T

takes care of both the frequency dependent attenuation factors
α(rm, ωq) of the environment as well as the frequency response of
the transducers. For any observation point x inside the ROI, the
search steering vector is denoted by a(x, ωq). With ỹ(ωq) being the
filtered vector of y(ωq), the non-coherent DAS beamforming results
in the following image reconstructed from the recorded signals

I(x) = (1/Q)
∑

ωq

aH(x, ωq)ỹ(ωq). (6)

As previously discussed, the DAS beamforming suffers from high
side lobe levels since its weights are fixed and are independent of
the data. On the other hand, standard Capon beamforming sup-
presses the interfering signals by adaptively choosing a weight func-
tion based on the received signals to reconstruct the image using the
following quadratic problem [17]

min
w

wHR(ωq)w subject to wHa(rs, ωq) = 1, (7)

where the M × 1 vector w is the beamformer weight vector and the
spatial covariance matrix is denoted by R(ωq). The solution to this
problem is given as [18, 19]

w(x, ωq) =
R(ωq)

−1a(x, ωq)

aH(x, ωq) R(ωq)−1 a(x, ωq)
. (8)

Applying the weights w, the coherent beamformed signal is

z = (1/Q)
∑

ωq

wH(x, ωq)ỹ(ωq). (9)

Due to the complex nature of the ultrasound, the Capon beamform-
ing is applied with the following modifications to the real ultrasound
data [1].

• Robust adaptive beamforming: The RCB proposed in [3, 17]
overcomes the sensitivity of the standard capon to mismatch
between the real and the presumed steering vectors. Assum-
ing that the presumed steering vector is denoted by a and the
real one by ā, a positive definite matrix by B = εI (with
ε defined in (10)), and considering ellipsoidal uncertainty on
the steering vector as (a− ā)HB(a− ā) ≤ 1, the following
optimization problem defines the RCB [3, 4]

min
ā

āHRā subject to ‖ a− ā ‖2 ≤ ε. (10)

It turns out the the optimal solution of Eq. (10) is when the in-
equality becomes equality (i.e. ‖ a− ā ‖2 = ε). By using
the Lagrange multiplier method with the multiplier denoted
by λ ≥ 0, the solution [3] to (10) is given as

ā = a− (I+ λ)−1a, (11)

where the solution to ‖ (λR+ I−1)a ‖ −ε = 0 provides λ.

• Spatial smoothing: The Capon beamformer fails in scenar-
ios in which the received signals are fully correlated as is the
case for the ultrasound data [3, 20]. A simple formulation
of spatial smoothing is used here to overcome the difficulty.
Having a linear array of M transducers, the sensors are di-
vided hypothetically into L sensors subarrays with overlap-
ping sensors. Then, the spatial covariance matrix is the aver-
age of the covariance matrices over each of these subarrays
as given by [21]

R̂(ωq) =
M−L+1∑

l=1

ỹl(ωq)ỹ
H
l (ωq)l, (12)

where ỹl(ωq) = [Ỹl(ωq), · · · , Ỹl+L(ωq)]
T is the vector of

the filtered received signals through subarray l.

2475



• Diagonal loading: In order to make the Capon beamformer
robust to perturbation in estimating the speed of sound and
also to the phase errors, a relatively small amount of white
noise is added to the spatial covariance matrix. Then the spa-
tial covariance matrix is replaced by RDL = R̂ + σI with σ
being proportional to the power of received signals [22].

3. WAVE ATOM BASED COMPRESSIVE SENSING

Before image reconstruction, this paper applies CS to each of the
received signals ym = [ym[0], · · · , ym[N−1]]T which are sampled
using a K × N (with K � N ) random measurement or sensing
matrix Φ (as shown in Fig. 1) of the following form

xm = Φym + e. (13)

The notation e in (13) represents all measurement errors. In CS, the
received signals can be reconstructed from a relatively small num-
ber of linear incoherent measurements, given the fact that the signals
have sparse representation in a known basis Ψ which is incoherent
with the measurement matrix Φ. In other words, the combination
of ΨΦ follows the so-called Restricted Isometry Property (RIP) [5].
Then, ym can be recovered from xm with high probability if the
elements of Φ are independent realizations of a Gaussian random
distribution or are following a Bernouli distribution of ±1. Any
sparse basis that gives the best signal reconstruction for the given
set of measurements can be used. For ultrasound, the researchers
have used several different basis functions like Fourier, wavelet and
wave atom. The quality of recovery depends mostly on (i) choosing
the best basis in which the signals have the most sparse representa-
tion; and (ii) the ratio of the number of compressed measurements
acquired to the number of information bearing (non-zero) compo-
nents of the signal in that basis. Recently, Demanent and Ying [10]
showed that wrapped oscillatory patterns like ultrasound waves have
sparse representation in the wave atom basis. Following [11,23] and
as shown in the third block of Fig. 1, the wave atom dictionary is
applied to represent the ultrasound RF signals in the sparse domain.
But in recovery, instead of using the traditional l1-norm or Basis
Pursuit, the optimization problem used here is based on regularized-
l1 [24] which can be written as

minimize τ ‖ ΨTym ‖1 +
1

2
‖ Φym − xm ‖22 (14)

with τ > 0 being the regularization parameter. The l1-regularization
term in (14) promotes Ψ-domain sparsity in the solution and the
l2-norm term keeps the solution close to the measurements. The
NESTA algorithm [15] is used to solve the optimization in (14) suit-
able for ultrasound signals with high dynamic range. The regulariza-
tion parameter τ is selected empirically based on a trade off between
the quality of reconstruction and the speed of convergence.

4. EXPERIMENTATION

To investigate the performance of the proposed approach, three dif-
ferent test environments are used based on simulations, phantom
data, and real in vivo cardiac data. For the simulation phase, the
Field II simulator [25] is used with four strong point reflectors in a
free-space with a sound velocity of 1540m/s. The transducers centre
frequency is 3.5MHz and a linear array of 128 rectangular trans-
ducers are used in the simulation. The width of the transducers are
440 micron with height of 5mm and kerf of 0.05mm. The excitation
is a sinusoidal signal with a sampling frequency of 50MHz. A full

data matrix is captured. The received data from each transducer is
sampled using the Bernouli projection matrix producing 1/8th of the
samples. Then each of the signals being projected by the sensing
matrix is recovered using wave atom dictionary which is optimized
based on (14) with τ selected to be 0.02. The reconstructed signals
are used by the Capon algorithm to form the final image. Since the
exact locations of the arrays are known, the standard Capon algo-
rithm is used with a diagonal loading. Figure 2(a) shows the result
of beamforming with the original RF data at the transducer array and
using the Capon algorithm whereas Figure 2(b) is the reconstructed
image taking 1/8 of the samples used in the first figure based on the
regularized-l1 CS recovery method. Both figures show the locations
of the reflectors correctly. Using an experimental ultrasound data,
the same methods are applied to the digital raw data acquired from
a wire phantom. The received signals were captured with a 128-
channel receiver (SonixDAQ, Ultrasonix, Richmond, B.C., Canada)
at the centre frequency of 6MHz as shown in Fig. 3(a). Fig. 3(b)
shows the image of the wires using the RCB method with ε = 4 af-
ter beamforming without CS and with 20MHz sampling frequency.
For quantitative comparisons, the structural similarity (SSIM) in-
dex [26] in the resulted image and the normalized root mean square
errors (NRMSE) in the reconstructed signals are often used to mea-
sure similarity between two images or two signals [8]. We compute
the SSIM for subplots (b) and (c) in Fig. 3 which is 0.9 for the wire
phantom and the NRMSE to be 0.0504 for the reconstructed signals.
Since a higher value of SSIM implies a greater level of similarity be-
tween the images, using CS results in some degradation in the quality
of the image reconstruction. Finally, the same method is applied to
the real cardiac data obtained from an ultrasound machine. While
the RCB based generated image is shown in Fig. 4(a), the recovered
image from 1/6th of the samples is shown in Fig. 4(b). Considering
the speckle noise structure that exists in the original image, both the
NRMSE and SSIM became 0.164 and 0.703 for the reconstructed
image (subplot (b)).

5. SUMMARY

In this work, a wave atom based CS method is applied to reconstruct
a 2D image from samples taken at a reduced rate compared with
conventional sampling rates used in ultrasound machines. A robust
adaptive beamforming technique is used on the recovered signals for
beamforming coupled with spatial smoothing to deal with coherent
sources, and diagonal loading to deal with medium uncertainties.
Experimenting with a wire phantom and in vivo cardiac data show
that it is possible to get the same quality image (with NRMSE of
0.164 and with SSIM of about 0.7) using only 10% − 20% of the
samples used in the conventional beamforming.
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Fig. 2. Field II simulated program with four point scatterers and 128 elements uniform linear array of transducers. (a) image reconstructed
with the Capon beamformer and (b) image reconstructed with the CS recovery based on the regularized-l1 method followed by applying the
Capon beamformer to the recovered signals. Both figures used the same 30-dB display dynamic range.

 

 

20 40 60 80 100 120

200

400

600

800

1000

1200

1400

1600

1800

2000
15

20

25

30

35

40

45

50

 

 

20 40 60 80 100 120

200

400

600

800

1000

1200

1400

1600

1800

2000
15

20

25

30

35

40

45

50

(a) (b) (c)

Fig. 3. Experimental ultrasound setup for the wire phantom with M = 128 (a), (b) image reconstructed with the robust Capon beamformer
and (c) image reconstructed with the CS recovery using the regularized-l1 and the RCB.
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Fig. 4. Experimental cardiac images: (a) Heart image reconstructed with the robust Capon beamformer and (b) image reconstructed with the
signals generated from a random Bernouli sensing matrix with 1/6th of the machine generated samples and recovered using the CS recovery.
The reconstructed signals are beamformed using the RCB to form the image with ε = 5 and 30-dB display dynamic range.
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