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ABSTRACT

This paper presents a Bayesian algorithm for linear spectral unmix-
ing that accounts for outliers present in the data. The proposed model
assumes that the pixel reflectances are linear mixtures of unknown
endmembers, corrupted by an additional term modelling outliers and
additive Gaussian noise. A Markov random field is considered for
outlier detection based on the spatial and spectral structures of the
anomalies. This allows outliers to be identified in particular regions
and wavelengths of the data cube. A Bayesian algorithm is proposed
to estimate the parameters involved in the model yielding a joint
linear unmixing and outlier detection algorithm. Simulations con-
ducted with synthetic data demonstrate the accuracy of the proposed
unmixing and outlier detection strategy for the analysis of hyper-
spectral images.

Index Terms— Hyperspectral imagery, unsupervised spectral
unmixing, Bayesian estimation, MCMC, nonlinearity detection.

1. INTRODUCTION

Spectral unmixing (SU) of hyperspectral images (HSI) has been the
subject of intensive interest over the last two decades. It consists of
distinguishing the materials and quantifying their proportions in each
pixel of an observed image. The SU problem has been widely stud-
ied for applications where pixel reflectances are linear combinations
of pure component spectra (called endmembers) [1, 2]. However,
as explained in [2], the linear mixing model (LMM) can be inap-
propriate for some hyperspectral images, such as those containing
sand-like materials or where relief is present in the scene. Moreover,
LMM-based methods can also fail when the data are corrupted by
(sparse) outliers, especially when extracting the endmembers from
the scene. Nonlinear mixing models (NLMMs) provide an interest-
ing alternative to overcoming the inherent limitations of the LMM.
They have been proposed in the hyperspectral image literature and
can be divided into two main classes [3]. The first class of NLMMs
consists of physical models based on the nature of the environment
(e.g., intimate mixtures [4] and multiple scattering effects [5, 6, 7]).
The second class of NLMMs contains more flexible models allowing
a wider range of nonlinearities to be approximated [8, 9].

In this work, we consider a general model for spectral unmixing
which assumes that the observed pixels result from a convex com-
bination of the endmembers of the scene, corrupted by an additive
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term modelling deviations from the classical LMM (e.g., outliers,
nonlinear effects) and additive Gaussian Noise. The number of end-
members is assumed to be known whereas their spectral signatures
are unknown. It is interesting to note that many nonlinear models
in the literature, including polynomial models [5, 6, 7] can be ex-
pressed in a similar manner. In this paper, the additional terms are
assumed to be a priori independent of the endmembers and/or their
proportions (abundances), as in [10, 11]. This class of models for
robust linear SU allows for general deviations from the LMM to be
handled in blind source separation methods, i.e., nonlinear effects,
outliers or possible endmember variability [12]. In [11], spatial and
spectral sparsity structures haven been considered for the additional
term since deviations from the LMM can occur in specific regions or
spectral bands of the HSI. This is typically the case when outliers are
present, but also when nonlinear effects occurs (relief) and when the
reflectance of materials present has significant variations in particu-
lar spectral ranges (such those caused for instance by variations of
water and chlorophyl contents in vegetation species). This paper ex-
tends the study presented in [11] which assumed a fixed partition of
the data cube to perform outlier detection, by introducing spatial and
spectral neighborhood relationships thus allowing for more flexible
group-sparsity structures for the outliers.

In the Bayesian framework, prior distributions are assigned to
the unknown model parameters to include available information
(such as parameter constraints) within the estimation procedure. In
particular, an Ising Markov random field is introduced to model
spatial and spectral correlations for the outliers. The joint posterior
distribution of the unknown parameter vector is then derived. Since
classical Bayesian estimators cannot be easily computed from this
joint posterior, a Markov chain Monte Carlo (MCMC) method is
used to generate samples according to this posterior. Finally, the
generated samples are used to compute Bayesian estimators.

The remaining sections of the paper are organized as follows.
Section 2 introduces the mixing model for robust linear SU of HSIs,
followed by Section 3 which summarizes the likelihood and the
priors assigned to the unknown parameters/hyperparameters of the
model. The resulting joint posterior distribution and the Gibbs sam-
pler used to sample from it are summarized in Section 4. Some
simulation results conducted on synthetic data are shown and dis-
cussed in Section 5. Conclusions and future work are finally reported
in Section 6.

2. PROBLEM FORMULATION

We consider a set of N observed pixels/spectra yn ∈ RL, n ∈
{1, . . . , N} where L is the number of spectral bands. Each of these
spectra is assumed to result from a linear combination ofR unknown
endmembers mr , corrupted by possible additive outliers and Gaus-
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sian noise. The observation model can be expressed as

yn =

R∑
r=1

mrar,n + rn + en

= Man + rn + en, n = 1, . . . , N (1)

where mr = [mr,1, . . . ,mr,L]
T is the spectrum of the rth mate-

rial present in the scene and ar,n is its corresponding proportion
(abundance) in the nth pixel. In (1), en is an additive indepen-
dently but non identically distributed zero-mean Gaussian noise se-
quence with diagonal covariance matrix Σ0 = diag(σ2), denoted
as en ∼ N (en;0L,Σ0), where σ2 = [σ2

1 , . . . , σ
2
L]

T is the vector
of the L noise variances and diag(σ2) is an L × L diagonal matrix
containing the elements of the vector σ2. Moreover, rn denotes the
outlier vector of the nth pixel. Note that the usual matrix and vector
notations M = [m1, . . . ,mR] and an = [a1,n, . . . , aR,n]

T have
been used in the second row of (1).

As consequence of physical constraints, the abundance vectors
an satisfy the following positivity and sum-to-one constraints

R∑
r=1

ar,n = 1, ar,n > 0, ∀r ∈ {1, . . . , R} . (2)

The problem investigated in this paper is to estimate the end-
member matrix M, the abundance matrix A = [a1, . . . ,aN ], the
noise variances in σ2 and the outlier matrix R = [r1 . . . , rN ] from
the observation matrix Y = [y1, . . . ,yN ]. This problem is similar
to the robust principal component analysis problem and a Bayesian
approach similar to that proposed in [13] is investigated here to esti-
mate the unknown parameters.

3. BAYESIAN MODEL

3.1. Likelihood

Eq. (1) shows that yn|M,an, rn,σ
2 ∼ N (yn;Man + rn,Σ0).

Assuming independence between noise sequences of theN observed
pixels, the likelihood of the observation matrix Y can be expressed
as
f(Y|M,A,R,σ2) ∝

|Σ0|−N/2etr

[
− (Y −MA−R)TΣ−1

0 (Y −MA−R)

2

]
(3)

where∝means “proportional to” and etr(·) denotes the exponential
trace.

3.2. Parameter priors

3.2.1. Prior for the abundance matrix A

Each abundance vector can be written as an = [cT
n , aR,n]

T

with cn = [a1,n, . . . , aR−1,n]
T and aR,n = 1 −

∑R−1
r=1 ar,n.

The LMM constraints (2) impose that cn belongs to the sim-
plex S =

{
c
∣∣∣cr ≥ 0, ∀r ∈ 1, . . . , R− 1,

∑R−1
r=1 cr ≤ 1

}
. To

reflect the lack of prior knowledge about the abundances, a uni-
form prior is assigned for each vector cn, n ∈ {1, . . . , N}, i.e.,
f(cn) ∝ 1S (cn), where 1S (·) is the indicator function defined
on the simplex S. Assuming prior independence between the N
abundance vectors {an}n=1,...,N leads to the following joint prior
distribution

f(C) =

N∏
n=1

f(cn), (4)

where C = [c1, . . . , cN ] is an (R− 1)×N matrix.

3.2.2. Prior for the endmember matrix M

To reflect the lack of prior knowledge about the endmembers, we use
the following multivariate truncated Gaussian prior

f(M) ∝
R∏

r=1

N
(R+)L

(mr;0, γ
−1IL) (5)

where γ is fixed to a small value, to ensure endmember positivity
while using a weakly informative prior. Note that (5) is considered
in order to handle the case where the data are not normalized. If the
data are actual reflectance values, a prior ensuring that the endmem-
ber spectra belong to (0; 1), such as a uniform, beta [14] or Gaussian
distribution. Note also that the prior can also include prior informa-
tion from an endmember extraction algorithm, as in [15, 16].

3.2.3. Prior for the noise variances

A Jeffreys’ prior is chosen for the noise variance of each spectral
band σ2

` , i.e., f(σ2
` ) ∝ σ−2

` 1R+

(
σ2
`

)
where 1R+ (·) denotes the in-

dicator function defined on R+, which reflects the absence of knowl-
edge about these parameters. Assuming prior independence between
the noise variances, we obtain f(σ2) =

∏L
`=1 f(σ

2
` ).

3.2.4. Priors of the outliers

As in [13, 11, 9], the outliers are assumed to be sparse, i.e., for most
of the pixels and spectral bands, the outliers are expected to be ex-
actly equal to zero. To model the outlier sparsity, we factorize the
outlier matrix as

R = Z�X, (6)

where Z ∈ {0, 1}L×N is a label matrix, X ∈ RL×N and � denotes
the Hadamard (termwise) product. This decomposition allows one
to decouple the location of the sparse components from their values.
More precisely, z`,n = [Z]`,n = 1 if an outlier is present in the `th
spectral band of the nth observed pixel with value equal to r`,n =
x`,n. A conjugate Gaussian prior is used for X, i.e.,

f(X|s2) =
∏
`,n

N
(
x`,n; 0, s

2) , (7)

where s2 controls the prior energy of the outliers. Note that (7) al-
lows the outliers to be negative. Other conjugate priors, such as trun-
cated Gaussian priors, could be used instead of (7), e.g., to enforce
outlier positivity. The next section presents the prior considered for
the label matrix Z.

3.2.5. Label matrix

For many applications, the locations of outliers are likely to be
spectrally (e.g., water absorption bands, material spectral variations)
and/or spatially (weakly represented components, shadowing ef-
fects,. . . ) correlated. An interesting way to take possibly correlated
outliers/nonlinear effects into account is to consider Markov random
fields (MRF) to build a prior for the label matrix Z [9]. MRFs
assume that the distribution of a label z`,n conditionally to the other
labels of the image equals the distribution of this label vector con-
ditionally to its neighbors, i.e., P(z`,n|Z\z`,n) = P(z`,n|ZV`,n),
where V`,n is the index set of the neighbors of z`,n, Z\z`,n denotes

2465



the matrix Z whose element z`,n has been removed and ZV`,n is the
subset of Z composed of the elements whose indexes belong to V`,n.
In this study, we consider that the spatial and spectral correlations
can be different and thus consider two different neighborhoods. We
decompose the neighborhood V`,n as V`,n = VL

`,n ∪ VN
`,n where

VN
`,n (resp. VL

`,n) denotes the spatial (resp. spectral) neighborhood
of z`,n. The proposed MRF can be expressed as

P(Z|β′) =
1

B(β′)
exp

[
βTφ(Z) + φ0 (Z, β0)

]
(8)

where β = [βN , βL]
T , β′ = [βT , β0]

T and
φL (Z) =

∑
n,`

∑
z`′,n∈V

L
`,n

δ(z`,n − z`′,n),
φN (Z) =

∑
n,`

∑
z`,n′∈VN

`,n
δ(z`,n − z`,n′),

φ(Z) = [φL (Z) , φN (Z)]T ,
φ0 (Z, β0) = β0

∑
n,`(1− z`,n) + (1− β0)

∑
n,` z`,n,

and δ(·) denotes the Kronecker delta function. Moreover, βN > 0
and βL > 0 are hyperparameters that control the spatial and spectral
granularity of the MRF and 0 ≤ β0 ≤ 1 is an additional parameter
that models the probability of having outliers in the image. Precisely,
the higher β0, the lower the probability of outliers in the data. The
estimation of the proposed Ising model hyperparameters will be dis-
cussed in the next section.

3.3. Hyperparameter s2

The following weakly informative inverse-Gamma prior is assigned
to s2

s2 ∼ IG(γ, ν), (9)

where (γ, ν) are fixed to (γ, ν) = (10−3, 10−3). The next section
derives the joint posterior distribution of the unknown parameters
associated with (1) and studies an MCMC methods to sample from
this posterior.

4. SAMPLING STRATEGY

4.1. Joint posterior distribution

Assuming the parameters M,A,Z,X and σ2 are a priori indepen-
dent, the joint posterior of the parameter vector θ =

{
M,A,X,Z,σ2

}
and hyperparameter s2 can be expressed as

f(θ, s2|Y,β) ∝ f(Y|θ)f(θ|s2,β)f(s2) (10)

where

f(θ|s2,β) = f(M)f(A)f(σ2)f(X|s2)P(Z|β). (11)

The next paragraph presents a sampling strategy to estimate the
unknown parameter vector θ and the hyperparameter s2.

4.2. Gibbs sampler

To overcome the challenging derivation of the Bayesian estima-
tors associated with f(θ, s2|Y,β), we propose to use an efficient
Markov Chain Monte Carlo (MCMC) method to generate samples
asymptotically distributed according to f(θ, s2|Y,β). More pre-
cisely, we consider a hybrid Gibbs sampler described in the next
part of this section. The principle of the Gibbs sampler is to sample
according to the conditional distributions of the posterior of interest

[17, Chap. 10]. In this paper, we propose to sample sequentially the
NL labels in Z, the endmember matrix M, the abundance matrix
A, the latent variables in X, the noise variances σ2 and s2 using
moves that are summarized below.
Labels: Sampling z`,n from its conditional distribution can be
achieved by drawing in {0, 1} with known probabilities.
Endmembers: It can be easily shown that the rows of M are a poste-
riori independent (conditionally to the other parameters). Moreover,
the conditional distribution of m`,:|Y,θ\m`,:

, s2 is a multivariate

Gaussian distribution restricted to
(
R+
)R, which can be sampled

efficiently using the method recently proposed in [18]. Note that
m`,: denotes the `th row of M and θ\m`,:

contains all the elements
of θ but m`,:.
Abundances: In a similar fashion, it can be easily shown that
the columns of A are a posteriori independent (conditionally to
the other parameters). Moreover, the conditional distribution of
cn|yn,θ\cn , s

2 is a multivariate Gaussian distribution restricted to
the simplex S, which can be sampled efficiently using the method
proposed in [18].
Latent variable matrix X: Similarly to the abundance matrix, the
columns of X are a posteriori independent (conditionally to the
other parameters) and can be sampled independently. Sampling each
column of X reduces to sampling from a multivariate Gaussian dis-
tribution (since a Gaussian conjugate prior as been assigned in (7)).
Noise variances σ2

` : Sampling the noise variances can be easily
achieved by sampling from L independent inverse-Gamma distri-
butions.
Hyperparameter s2: Similarly to the noise variances, it can be
shown that f(s2|yn,θ) is an inverse-Gamma distribution from
which it is easy to sample.

AfterNMC iterations (includingNbi burn-in samples that are dis-
carded), the label matrix is estimated using marginal maximum a
posteriori (MAP) estimation. This estimator is then used to compute
the minimum mean square error (MMSE) of R conditioned upon
Z = ẐMAP using

R̂ =
(
R̂MMSE|ẐMAP

)
� ẐMAP (12)

Finally, the remaining parameters are estimated using the empirical
averages of the generated samples (MMSE estimates). It is inter-
esting to note that thanks to the conjugate Gaussian prior (7), the
matrix X could have been marginalized. However, this marginal-
ization would lead to non-standard conditional distributions for σ2

and s2 and accept/reject procedures would have to be used to update
these variables. In this paper, we propose not to marginalize X and
estimate this matrix, as it would be achieved when considering more
complex prior than (7) (e.g., to handle outlier positivity).

Due to space constrains, we assume here that the hyperparame-
ter vector β of the Ising MRF in (8) is known. However, it is well
known that fixing these parameters to arbitrary values can have a
significant impact on the detection performance. Consequently, we
propose to estimate β before applying the proposed algorithm, us-
ing an adaptive MCMC method investigated in [19] which provides
a maximum marginal likelihood estimate β̂ of β and which can then
be used in (11) instead of β. The interested reader is invited to con-
sult [19] for further details of the estimation of β. In the remainder
of the paper, the estimator β̂ (which is close to β in practice) is used
in (11) instead of β.

5. EXPERIMENTS

The performance of the proposed method, referred to as “RBLU”
(Robust Bayesian linear unmixing), is investigated synthetic data.
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Additional simulations, conducted on real data and not presented
here due to paper length constraints, are discussed in [20]. In this
section, we consider two synthetic 60× 60 pixels hyperspectral im-
age composed of R = 3 endmembers and observed at L = 207
spectral bands (see Fig. 1). The abundances of the two images
are uniformly distributed in the simplex defined by the positivity
and sum-to-one constraints and the noise variances have been set
to σ2

` = 10−4, ∀`, which corresponds to an average signal-to-noise
ratio (SNR) of 30dB. The first image I1 does not contain outliers
whereas the hyperparameter s2 controlling the outlier power has
been set to s2 = 0.1 for the second image I2. The label matrix of
I2 has been generated using (8) with β = [0.4; 0.2; 0.501]T which
leads to approximately 10% of actual outliers in R. The proposed
method has been applied to the images with NMC = 600 iterations
(including Nbi = 300). The endmember matrix has been initialized
using the VCA algorithm [21] and the abundance matrix using FCLS
[1]. The combination VCA-FCLS is also used as a state-of-the-art
method for performance comparison.

The quality of the unmixing procedures can be measured by
comparing the estimated and actual abundance vector using the root
normalized mean square error (RNMSE) defined by

RNMSE =

√√√√ 1

NR

N∑
n=1

‖ân − an‖2 (13)

where an and ân are the actual and estimated abundance vectors for
the nth pixel of the image. The quality of endmember estimation is
evaluated by the spectral angle mapper (SAM) defined as

SAM = arccos
(
〈m̂r,mr〉
‖m̂r‖ ‖mr‖

)
(14)

where mr is the rth actual endmember and m̂r its estimate. The
smaller |SAM|, the closer the estimated endmembers to their actual
values.

Table 1 compares the performance of the proposed method
and the VCA-FCLS unmixing strategy and shows that the pro-
posed methods outperforms VCA-FCLS in terms of abundance and
endmember estimation. Moreover, the confusion matrix of the pro-
posed outlier detection method in Table 2illustrates the ability of the
method to identify the corrupted data.

RBLU VCA-FCLS o-FCLS

I1
SAM (×10−2)

m1 0.21 0.68 -
m2 0.17 0.92 -
m3 0.26 1.96 -

RNMSE (×10−2) 0.68 1.60 0.67

I2
SAM (×10−2)

m1 0.21 4.03 -
m2 0.17 3.08 -
m3 0.55 4.26 -

RNMSE (×10−2) 0.75 6.63 5.59

Table 1. Estimation performance.

z = 0 z = 1 Total
ẑ = 0 682187 3917 686104
ẑ = 1 329 58767 59096
Total 682516 62684 745200

Table 2. Outlier detection (I2): confusion matrix.
Finally, Table 3 compares the abundance estimation perfor-

mance of RBLU to o-FCLS (which assumes perfectly known end-
members) for different outlier corruption scenarios (proportions and

Fig. 1. Actual endmembers (red lines) used to generate the synthetic
images and endmembers estimated by VCA (black lines) and RBLU
(dashed blue lines) for I2.

s2 = 0.01 s2 = 0.1

RBLU o-FCLS RBLU o-FCLS

Outlier prop.
10% 0.77 2.00 0.75 5.59

20% 0.80 3.06 0.77 8.89

30% 0.86 3.66 0.87 10.34

Table 3. Abundance RNMSE (×10−2) for different outlier energies
and proportions.

variances). This table shows a general performance degradation of
the algorithms when the number of outliers increases. However,
although RBLU also estimates the endmembers (jointly with the
abundances), the performance degradation is less significant for
RBLU than for o-FCLS thanks to its outlier detection ability. It is
interesting to note that RBLU is also less sensitive than o-FCLS
to the outlier variance (o-FCLS abundance estimation performance
decreases when the outlier variance increases).

6. CONCLUSION

In this paper, we have investigated a Bayesian algorithm for robust
linear spectral unmixing of hyperspectral images allowing joint end-
member and abundance estimation and outlier detection. Appropri-
ate prior distributions were used to enforce the endmember and abun-
dance positivity and the abundance sum-to-one constraints. More-
over, an Ising Markov random field was used to model outliers spa-
tial and spectral correlations. Finally, a Gibbs sampler was proposed
to sample from the resulting posterior distribution. Simulations con-
ducted on synthetic data showed the performance of the proposed
method for linear SU and the detection of outliers in hyperspectral
images. The proposed method has been applied to real hyperspectral
images (the results are not presented due to paper length constraints)
and has provided interesting results in terms of outlier analysis (see
[20]). In this paper, the proposed outlier model was investigated for
linear blind source separation. It would be interesting to extend this
work to nonlinear models and to robust subspace identification prob-
lems, as in [11].
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