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ABSTRACT

Hyperspectral imaging has a wide range of applications;
however, due to the high dimensionality of the data involved,
the complexity and cost of hyperspectral imagers can be
prohibitive. Exploiting redundancies along the spatial and
spectral dimensions of a hyperspectral image of a scene has
created new paradigms that do away with the limitations of
traditional imaging systems. While Compressive Sensing
(CS) approaches have been proposed and simulated with suc-
cess on already acquired hyperspectral imagery, most of the
existing work relies on the capability to simultaneously mea-
sure the spatial and spectral dimensions of the hyperspectral
cube. Most real-life devices, however, are limited to sampling
one or two dimensions at a time, which renders a significant
portion of the existing work unfeasible. In this paper we
propose a novel CS framework that is a hybrid between tradi-
tional vectorized approaches and recently proposed tensorial
approaches, and that is compatible with real-life devices both
in terms of the acquisition and reconstruction requirements.

Index Terms— Compressive sensing, hyperspectral
imaging, high-order tensorial data representation, multilinear
algebra

1. INTRODUCTION

Hyperspectral imaging is the process of using specialized
sensors to collect image information across the electromag-
netic spectrum, often beyond the visible electromagnetic
wavelength range. A hyperspectral image can be represented
as a three-dimensional data cube where the first and second
dimensions correspond to spatial data and the third dimen-
sion corresponds to the spectral bands. Objects have their
own respective fingerprints known as spectral signatures;
consequently, there is a wide range of applications that rely
on decomposing a two-dimensional image of a scene into its
spectral bands in order to enable object identification within
the scene. These applications include remote sensing, astron-
omy, mineralogy, agriculture, healthcare and surveillance,
among others. The main disadvantages of hyperspectral
imaging are related to the intrinsic high dimensionality of the

data, which imposes storage, computational, and sensitivity
constraints. These factors drive up the complexity and cost
of traditional hyperspectral imagers. Fortunately, there is sig-
nificant redundancy in hyperspectral images along both the
spatial and the spectral dimensions which can be exploited by
judicious sampling and reconstruction techniques, which in
turn gives rise to sensing equipment with reduced complexity
and cost. One such set of techniques is Compressive Sensing
(CS) [1, 2] which exploits the sparsity of a signal in order
to integrate acquisition and compression. CS theory enables
reconstruction of a sparse signal from a few linear measure-
ments (relative to the size of the reconstructed signal) via
suitable non-linear minimization processes.

Traditional CS theory is well-suited for sampling and re-
constructing one-dimensional signals, and naive extensions
of the CS framework to multidimensional problems typically
rely on vectorial representations of the data (see [3, 4, 5] for
examples of two-dimensional imaging tasks tackled with a
vectorized CS approach), which result in increased compu-
tational and memory requirements. Applications involving
color/hyperspectral imagery and video data, which are intrin-
sically high-order, are not adequately addressed by vectorial
approaches.

The extension of CS theory to multidimensional data is
a research topic that has received increased attention in re-
cent years. One branch of research attempts to recover the
best low-rank tensor approximation of the original signal: in
[6], the existence and uniqueness of the best rank-R tensor
approximation in the case of third order tensorial data were
proven; in [7], a two-stage process comprising fitting of a
low-rank model followed by per-mode decompression was
proposed; in [8], a stable method for reconstruction of a low
multilinear rank tensor from a set of multilinear projections
was introduced. A separate branch uses Kronecker product
matrices as sparsifying bases which jointly model the struc-
ture present in all of the signal dimensions within a CS frame-
work [9, 10] via an approach termed Kronecker Compressive
Sensing (KCS). Some research has focused on the explicit
application of sparse image models to hyperspectral imaging:
an overview of the state-of-the-art sparse models for hyper-
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spectral image modeling was provided in [11]; a method that
relies on separate sensing of spectral rows and that is compat-
ible with onboard systems with a pushbroom configuration
was proposed in [12]; lastly, a hyperspectral imager based on
a single pixel camera architecture was introduced in [13].

In this paper, we introduce a method that is a hybrid
between traditional vectorized approaches and the Gener-
alized Tensorial Compressive Sensing (GTCS) framework
introduced in [14, 15]. Unlike tensor-based approaches, the
proposed method is compatible with real-life devices which
usually acquire and process at most two dimensions of the
data cube at a time: for example, systems with a pushb-
room configuration [12] are equipped with a linear array of
sensors which at a given instant in time acquires a spectral
row, that is, one spatial dimension across all wavelengths; in
contrast, single-pixel-camera-based architectures [13] sample
both spatial dimensions corresponding to a single spectral
band at a given time. Note that tensorial approaches rely on
sampling all modes of the hyperspectral data cube simulta-
neously, which renders them infeasible for implementation
on traditional CS-based hyperspectral imaging devices. Also,
unlike existing approaches, the proposed method is highly
computationally efficient, and thus does not impose signifi-
cant computational requirements on the underlying hardware
platform.

This paper is organized as follows: Section 2 briefly re-
views concepts and notation from multilinear algebra used
throughout the paper. Section 3 describes the proposed sys-
tem architecture and the sampling and reconstruction method-
ologies. Section 4 contains experimental validation of the
proposed approach. Finally, Section 5 concludes the paper.

2. NOTATION AND TERMINOLOGY

Lower-case italic characters represent scalar values (e.g., a, b),
bold-face characters represent vectors (e.g.,a,b), capital
italic characters represent matrices (e.g., A,B) and capi-
tal calligraphic characters represent tensors (e.g.,A,B). A
tensor is a multidimensional array. The order of a tensor
corresponds to its number of modes. For instance, tensor
X ∈ R

N1×...×Nd has order d and the dimensionality of its ith

mode (also denoted mode i) is Ni.
The mode-i product between tensorX = [xα1,...,αi,...,αd

] ∈
R
N1×...×Ni×...×Nd and matrix U = [uj,αi

] ∈ R
J×Ni is de-

noted by X ×i U and is of size N1 × . . . × Ni−1 × J ×
Ni+1× . . .×Nd. The elements of the mode-i product satisfy
(X×iU)α1,...,αi−1,j,αi+1,...,αd

=
∑Ni

αi=1 xα1,...,αi,...,αd
uj,αi

.
The mode-i fibers of tensor X = [xα1,...,αi,...,αd

] ∈
R
N1×...×Ni×...×Nd are obtained by fixing every index but αi.

The mode-i unfolding of X , denoted X(i), equals a matrix of
size Ni × (N1 · . . . · Ni−1 · Ni+1 · . . . · Nd) whose columns
are the mode-i fibers of X .

3. PROPOSED APPROACH

Similar to most compressive sensing methodologies, the pro-
posed approach is implemented in two stages: a sampling and
a reconstruction stage. In the sampling stage, a sensing device
obtains a set of linear measurements from the scene; a hyper-
spectral representation of the scene is then recovered from the
measurements in the reconstruction stage. This is illustrated
in Fig. 1.

Fig. 1. Block diagram of proposed approach.

3.1. Sampling Stage

We denote the sampled hyperspectral cube representing an
image of the scene as a tensor of order threeX ∈ R

Nr×Nc×Nb ,
where Nr and Nc are the number of rows and columns of the
image, respectively, and Nb is the number of bands. We refer
to the row, column and spectral dimensions of the image as
modes 1, 2 and 3 of the tensor, respectively. Sampling of X
is achieved by performing a set of mode-i products between
X and sampling matrices Ui, for i = 1, 2, 3, one for each ten-
sor mode. The entries of the sampling matrices are randomly
generated, for example, drawn from a Gaussian distribution.

3.1.1. Hard Sampling Module

The hard sampling module performs measurements across
two tensorial modes of the tensor representing the hyper-
spectral image of the scene; this approach is realizable with
real-life sensing devices such as those described in [12] and
[13], the former sampling the two modes corresponding to
the rows and spectral bands, and the latter sampling the two
modes corresponding to the rows and columns. Without loss
of generality, assume the hard sampling module performs
sampling across the first two modes. Then the hard sampling
module produces a set of hard samples that can be represented
in the form of a tensor Yh satisfying

Yh = X ×1 U1 ×2 U2, (1)

where U1 ∈ R
mr×Nr and U2 ∈ R

mc×Nc . Here, mr and mc are
the effective number of measurements along the columns and
rows, respectively, and Yh ∈ R

mr×mc×Nb .

3.1.2. Soft Sampling Module

The soft sampling module takes as input the hard samples Yh
computed by the hard sampling module and performs sam-
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pling across the remaining tensorial mode. Since all the in-
formation about the scene required to perform soft sampling
is included in Yh, this stage of sampling does not require in-
volvement of the sensing device, and is performed via soft-
ware operations. To this end, the mode-3 product between
the tensor representing the hard samples and a sampling ma-
trix U3 ∈ R

mb×Nr is performed in order to obtain a set of soft
samples represented in the form of a tensor Ys ∈ R

mr×mc×mb

satisfying
Ys = Yh ×3 U3. (2)

3.2. Reconstruction Stage

The compressive sensing reconstruction module takes the set
of soft samples as well as the known set of sampling matrices,
and reconstructs the hyperspectral data corresponding to the
scene being imaged by solving a set of `1 minimization tasks.
Just like the measurement stage, the reconstruction stage can
be broken down into two steps.

3.2.1. Recovery of Yh

In the first step of the reconstruction stage, Ŷh, an estimate of
Yh, is recovered from Ys and U3. To this end, Ys is mode-3
unfolded to obtain Ys(3) ∈ R

mb×(mr·mc). A matrix Z(3) ∈

R
Nb×(mr·mc) is then formed by stacking solutions z?(3)i ∈

R
Nb×1 to the set of `1 minimization tasks

z?(3)i = min{‖z(3)i‖1} subject to

y(3)i = U3z(3)i, for i = 1, 2, . . . (mr ·mc),
(3)

where y(3)i are the columns of Ys(3) and z?(3)i are the columns

of Z(3). Then Ŷh = Z is the tensor whose mode-3 unfolding
is Z(3). Note that, as expected, Ŷh ∈ R

mr×mc×Nb .

3.2.2. Recovery of X

In the second step of the reconstruction stage, X̂ , an estimate
of X , is recovered from Ŷh = Z and the sampling matri-
ces U1 and U2. To this end, Z is mode-2 unfolded to obtain
Z(2) ∈ R

mc×(mr·Nb). A matrix W(2) ∈ R
Nc×(mr·Nb) is then

formed by stacking solutions w?
(2)i ∈ R

Nc×1 to the set of `1
minimization tasks

w?
(2)i = min{‖w(2)i‖1} subject to

z(2)i = U2w(2)i, for i = 1, 2, . . . (mr ·Nb),
(4)

where z(2)i are the columns of Z(2) and w?
(2)i are the columns

of W(2). Let W ∈ R
mr×Nc×Nb be the tensor whose mode-2

unfolding is W(2). Note that W is an estimate of X ×1 U1.
With that in mind, W is mode-1 unfolded to obtain W(1) ∈

R
mr×(Nc·Nb). A matrix V(1) ∈ R

Nr×(Nc·Nb) is then formed by
stacking solutions v?(1)i ∈ R

Nr×1 to the set of `1 minimization
tasks

v?(1)i = min{‖v(1)i‖1} subject to

v(1)i = U1w(1)i, for i = 1, 2, . . . (Nc ·Nb),
(5)

where w(1)i are the columns ofW(1) and v?(1)i are the columns

of V(1). Then X̂ = V is the tensor whose mode-1 unfolding is
V(1). Note that, as expected, X̂ ∈ R

Nr×Nc×Nb . Although the
uniqueness of this solution can be demonstrated, the proof is
beyond the scope of this paper.

4. EXPERIMENTAL RESULTS

We tested the performance of the proposed algorithm both
in terms of reconstruction accuracy and execution time. We
compared our results to those achieved by the Iterative Total
Variation algorithm (ITV) introduced in [12]. We consider
ITV to be state-of-the-art among algorithms that are imple-
mentable in real-life devices since it was shown to outperform
both KCS [9, 10], and one of its iterative implementations
proposed in [16] under the feasibility constraints imposed by
existing hyperspectral imaging devices. The plots in the fig-
ures in this section refer to the proposed algorithm as HCS,
which stands for Hybrid Compressive Sensing.

In order to test the performance of the algorithm, acqui-
sition and reconstruction of hyperspectral images from the
AVIRIS Yellowstone dataset proposed in [17] was simulated.
Reconstruction accuracy was measured in terms of Mean-
Squared Error (MSE) between the reconstructed and original
hyperspectral image, and execution time was measured in sec-
onds on a Windows 7 machine with 16GBytes of RAM and
an Intel i7 2.80GHz processor. The implementation of both
algorithms was done in Matlab R2013b. The basis pursuit
method provided by the `1-MAGIC toolbox [18] was used to
solve the optimization problems in Eqs. (3)-(5). Each data
point in every figure corresponds to an average of five runs.

So as to keep the computational complexity of the prob-
lem manageable for the ITV algorithm, the hyperspectral im-
ages were cropped to 32× 32 pixels and 32 bands. In the first
experiment, the rows and columns of the image were hard
sampled. The plots in Fig. 2 contain results relative to re-
construction accuracy. Figure 2(a) plots the reconstruction
error as a function of the percentage of number of samples
acquired relative to the sparse representation of the original
image in the discrete cosine transform (DCT) domain, where
the sparse representation of the image is obtained by clipping
DCT coefficients below a given threshold to 0. Figure 2(b)
plots the reconstruction error as a function of the percentage
of number of samples acquired relative to the full represen-
tation of the original image in the discrete cosine transform
(DCT) domain. In the case when the clipped DCT represen-
tation of the image is used as the target image, the proposed
algorithm outperforms ITV regardless of the number of sam-
ples. On the other hand, when the full DCT representation
of the image is used as a reference, ITV outperforms the pro-
posed algorithm when the number of samples exceeds 40% of
the total number of image samples. These results indicate that
when the image representation of the scene is not truly sparse
in the target sparsifying domain, the proposed algorithm is
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better suited to perform reconstruction when there are con-
straints in the number of samples that can be acquired (which
happens for example, when the scene is dynamic or the imag-
ing device is in motion); on the other hand, when the image
is sparse in the target sparsifying domain, the proposed algo-
rithm outperforms ITV regardless of the number of samples.
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Fig. 2. Reconstruction performance of ITV and HCS with
hard sampling of rows and columns.

The plots in Fig. 3 contain the execution times required
to achieve the results illustrated in Fig 2. It can be seen that
the proposed algorithm consistently and significantly outper-
forms ITV in terms of computational efficiency regardless of
the sparsity assumptions imposed on the target image, as well
as of the number of samples used in the reconstruction pro-
cess.
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(b) Unclipped case
Fig. 3. Reconstruction time of ITV and HCS with hard sam-
pling of rows and columns.

In the second experiment, the rows and spectral bands of
the image were hard sampled. The plots in Fig. 4 contain
results relative to reconstruction accuracy. Figure 4(a) plots
the reconstruction error as a function of the percentage of
number of samples acquired relative to the sparse represen-
tation of the original image in the discrete cosine transform
(DCT) domain. Figure 4(b) plots the reconstruction error as
a function of the percentage of number of samples acquired
relative to the full representation of the original image in the
discrete cosine transform (DCT) domain. In this case, the
proposed algorithm more consistently outperforms ITV, ex-
cept when the full representation of the image is maintained
and a large number of samples are used in the reconstruction.
These results indicate that the image is sparser in the DCT
domain along its spectral dimension than along its spatial di-
mensions. The plots in Fig. 5 contain the execution times re-
quired to achieve the results illustrated in Fig 4. Once again,
the proposed algorithm consistently and significantly outper-
forms ITV in terms of computational efficiency.

In the last experiment, we examined the behavior of the
execution times of both ITV and the proposed algorithm as a

Table 1. Execution times as a function of image dimension-
ality.
P

P
P

P
P

P
Method

n 2 3 4 5 6 7
Time (sec)

HCS 0.06 0.3 1.6 8.3 18.6 111.8
ITV 11.0 24.9 59.4 231.7 3527.1 82361.0

function of the dimensionality of the data cube. To this end,
we used target images with 2n rows, 2n columns and 2n bands
for n = 2, 3, . . . , 7. Table 1 contains the results. It can be
seen that the efficiency advantage of the proposed algorithm
over ITV increases as the dimensionality of the target image
increases.
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(b) Unclipped case
Fig. 4. Reconstruction performance of ITV and HCS with
hard sampling of rows and spectral bands.
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Fig. 5. Reconstruction time of ITV and HCS with hard sam-
pling of rows and spectral bands.

5. CONCLUSIONS

We have proposed a novel CS framework for the acquisition
and reconstruction of hyperspectral imagery with real-life de-
vices which are constrained to sampling one or two dimen-
sions of the scene at any given time. While the main ad-
vantage of the proposed approach lies in its extreme com-
putational efficiency, we demonstrated via simulation that its
reconstruction performance is on par or better than that of
the state-of-the-art algorithms under reasonable constraints,
and only slightly worse in more general scenarios. We be-
lieve that, given the significant computational efficiency gains
achieved, the proposed algorithm will enable the execution of
CS algorithms in embedded portable architectures. We ex-
pect that this will reflect in an increased number of algorithms
performing in quasi-real time on portable devices; this, since
up until today, devices showcased significant delays in image
reconstruction or were limited to offline reconstruction at a
central processing unit with significant computational power
requirements.
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