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ABSTRACT

In through-the-wall radar imaging, targets behind the wall reflect

weak electromagnetic signals that are obscured by the strong returns

from exterior wall, rendering the detection and classification of in-

door stationary targets very difficult. In this paper, a tensor-based

subspace method is proposed for wall clutter mitigation. The radar

signals received from the antenna array are transformed into a data

tensor. Higher-order singular value decomposition is used to seg-

regate the wall reflections from the target returns. Simulation and

experimental results show that the proposed method is effective in

removing reflections backscattered from both homogeneous and het-

erogeneous walls.

Index Terms— Wall clutter mitigation, Tensor, HOSVD, Sub-

space projection, Through-the-Wall radar imaging.

1. INTRODUCTION

With recent advances in radar technology, imaging through opaque

obstacles, such as walls and doors, has attracted interest from re-

searchers, research organizations, government agencies, and the mil-

itary. The objectives of through-the-wall radar imaging (TWRI) are

to detect, locate, and track targets inside an enclosed building struc-

ture and determine the building layouts [1–7]. One of the main prob-

lems facing TWRI is the strong and persistent reflections backscat-

tered from the exterior wall, which mask the weak target returns,

resulting in images with high clutter. For imaging of moving targets

behind walls, change detection or Doppler processing can be applied

to remove the wall contributions [8–10]. However, for stationary tar-

gets, mitigation of the wall clutter is much more challenging.

Several wall clutter mitigation methods have been proposed for

TWRI [11–22]. A simple method for wall removal is background

subtraction; however, it requires prior measurements from the back-

ground or reference scene devoid of target(s) to eliminate the over-

whelming electromagnetic (EM) wall signature. Though this method

is effective, accessibility to the background scene is not always pos-

sible in practice. Another method for wall clutter mitigation is to

estimate the wall parameters so as to model the wall returns, which

are then subtracted from the total radar returns to obtain a wall clut-

ter free signal [11, 12]. This method works well if the wall param-

eter estimation and modeling are done correctly. In [13], the wall

reflections are removed by employing three parallel antenna arrays,

where the upper and lower ones act as receiver and the middle one

as transmitter. The wall contributions is removed by subtracting the

radar returns from the lower and upper arrays. This method, how-

ever, requires an additional array of receivers, and it is difficult to

control the effect of the subtraction operation on the target reflec-

tions. Recently, several methods have been proposed for wall clut-

ter mitigation, which do not depend on the wall parameter estima-

tion nor require prior knowledge of the background scene [14–22].

In [14], spatial filtering was proposed to cancel the wall reflections

by removing the DC (direct-current) value or low spatial frequencies

across the antenna array [14]. This method works well when the wall

returns are the same at all antenna locations and the wall is homo-

geneous. In [15–20], singular value decomposition (SVD) was used

to segregate the wall reflections from the target returns. In [15, 16],

the SVD approach was applied to range profiles, in [17,19,20] SVD

was applied to the data matrix comprising the space-frequency mea-

surements, and in [18] SVD was applied to the formed image. More

recently, a wall clutter removal method based on entropy was pro-

posed in [21]. It assumes that the antenna array is placed parallel to

the wall surface and the wall clutter has similar behavior over each

signal trace. In [22], the mitigation of wall returns from the radar

signal was solved as a sparse representation problem, where the dis-

crete prolate spheroidal sequence (DPSS) is used to estimate the wall

returns from compressive measurements. This method depends on a

predefined range, obtained from EM simulations [23], to determine

the recovered wall coefficients.

Many of the existing wall clutter mitigation methods assume that

the wall is homogeneous and the antenna array is aligned perfectly

parallel to the wall surface. However, these two conditions may not

always be satisfied in practical TWRI applications. Furthermore, the

study conducted in [17, 20] shows that the wall returns can span a

multidimensional subspace, due to, among other factors, the wall

EM characteristics, the wall thickness uniformity, and the configu-

ration of the antenna array. In this paper, we propose to use higher-

order SVD (HOSVD) [24] for wall clutter mitigation. Since its in-

troduction in the mid-1990’s, HOSVD has been applied to various

research areas, including parameter estimation [25], image denois-

ing [26], text representation [27], and web link analysis [28]. Here,

it is used to develop a method that can effectively remove the wall re-

turns from the received signals. The proposed method assumes that

the reflections backscattered from the front wall are relatively much

stronger than those backscattered from the behind-the-wall targets.

Furthermore, the wall and target reflections reside in different sub-

spaces spanned by singular vectors extracted from the data tensor.

The remainder of the paper is organized as follows. Section 2

presents TWRI signal model and image formation using delay-and-

sum (DS) beamforming. Section 3 describes the proposed wall clut-

ter mitigation method using HOSVD. Section 4 discusses the exper-

imental results and comparisons based on simulated and real data.

Section 5 presents concluding remarks.
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2. SIGNAL MODEL AND DS BEAMFORMING FOR TWRI

Consider an N -element linear synthetic aperture radar (SAR) for

TWRI. The transceiver emits a wideband stepped-frequency signal

comprising M frequencies, ωm (m = 1, . . . ,M ). The radar is

placed at a certain standoff distance from a wall. Suppose there

are G targets behind the wall, the radar signal yn(m) of the mth

frequency received by the nth antenna can be expressed as

yn(m) =
R∑

r=1

σwAr exp(−jωmτr
w,n) +

G∑

p=1

σp exp(−jωmτp,n),

(1)

where σw,n is the complex reflectivity of the wall at the nth antenna

location, R is the number of wall reverberations, τ1
w,n is the prop-

agation delay associated with the direct return from the wall, τr
w,n,

r > 1 is the propagation delay associated with the rth wall reverber-

ation, Ar is the path loss factor associated with the rth wall return,

σp is the complex reflectivity of the pth target, and τp,n is the two-

way propagation delay between the nth antenna and the pth target.

To form an image, the scene is divided into a rectangular grid

consisting of Q pixels. Using DS beamforming, the complex ampli-

tude of the qth pixel can be computed as

I(q) =
1

NM

N∑

n=1

M∑

m=1

yn(m) exp
(
jωmτn,q

)
, (2)

where τn,q denotes the focusing delay between the nth antenna and

the qth pixel; see [29] for more details on computation the focussing

delay. Applying DS beamforming directly to the radar signal given

in (1) produces images with high wall clutter. Therefore, wall clutter

mitigation is required to remove the wall returns from the received

signals. The next section describes the proposed tensor-based sub-

space method for wall clutter mitigation.

3. WALL CLUTTER MITIGATION USING HOSVD

In [17] and [20], we have shown that the direct wall returns and the

wall reverberations reside in a multidimensional subspace and used

SVD to identify the singular vectors spanning the wall subspace.

However, not all wall returns are captured by the dominant singu-

lar vectors. Some wall residual reflections interact with the target

and form singular vectors which carry information about the target

and the wall. To address this problem, we developed a segmentation

technique based on Gaussian Mixture model (GMM) to remove the

weak wall components from the target signals [19]. Here, we employ

HOSVD to determine a multilinear subspace characterizing the wall

returns and then project the radar signals onto the subspace orthog-

onal to the multilinear wall subspace. After wall clutter mitigation,

we use DS beamforming to form the image of the scene.

3.1. Multilinear Wall Subspace

The multilinear wall subspace is determined by applying HOSVD to

the data tensor, which is obtained by arranging the frequency sam-

ples from each antenna into a Hankel matrix Yn [24]:

Yn =




yn(1) yn(2) . . . yn(L)
yn(2) yn(3) . . . yn(L+ 1)

...
...

. . .
...

yn(L) yn(L+ 1) . . . yn(2L− 1)


 , (3)

where L = ⌈M/2⌉. The N Hankel matrices are then stacked one

behind the other to form a mode-3 tensor, Y = {Y1, . . . , YN} ∈
C

L×L×N . Using HOSVD, the tensor Y can be decomposed as

Y = C ×1 U
(1) ×2 U

(2) ×3 U
(3), (4)

where C is the core tensor, ×i, i = 1, 2, 3 is the mode-i product,

U (i) = [u
(i)
1 , . . . ,u

(i)
ki
] is the unitary matrix of mode-i matriciza-

tion of tensor Y , and ki is the number of singular vectors associated

with mode-i. Though it is expected that the strong wall reflections

span the first few dominant singular vectors, some weak wall com-

ponents may reside in the non-dominant singular vectors, which are

interleaved with the target singular vectors [19, 20]. Therefore, the

identification of the singular vectors spanning the multilinear wall

subspace is performed as follows. First, a vector space Si,j is formed

with the jth singular vector of mode-i:

Si,j = u
(i)
j (u

(i)
j )H . (5)

Next, the data tensor Y is projected onto the vector space Si,j

Ŷi,j = Y ×i S
i,j . (6)

Let Ŷ i,j
n denote the processed Hankel matrix associated with the nth

antenna obtained from the data tensor Ŷi,j = {Ŷ i,j
1 , . . . , Ŷ i,j

N } and

zkl denote the element at the kth row and lth column of matrix Ŷ i,j
n .

The radar signal ŷi,j
n (m) of the mth frequency received at the nth

antenna location is obtained by performing a diagonal averaging op-

eration given as follows:

ŷi,j
n (m) =





1
m

m∑
l=1

zl,m−l+1, for 1 ≤ m ≤ L

1
N−L+1

N−L+1∑
l=m−L+1

zl,m−l+1, for L+ 1 ≤ m ≤ M

(7)

The singular vectors spanning the multilinear subspace can be

identified from the range profiles obtained from the reconstructed

signals. In [20], we developed a technique to classify the singular

vector into wall and target classes. Here, this classification technique

is applied to each mode to determine the multilinear wall subspace.

The next step is to project the data tensor onto the subspace orthog-

onal to the wall subspace for wall clutter mitigation.

3.2. Wall Clutter Mitigation by Subspace Projection

First the multilinear wall subspace is formed, and then a subspace

projection is performed for wall clutter removal. Let W i be the in-

dex set of wall singular vector associated with mode-i and Û (i) =

{u
(i)
j }j∈W i be a matrix of singular vectors formed from the index

set of W i. The subspace orthogonal to the wall subspace of mode-i
is computed as

P
(i)
⊥

= I − Û (i)(Û (i))H , (8)

where I denotes the identity matrix. For wall clutter mitigation, the

data tensor Y is projected onto the multilinear orthogonal subspace

Ỹ = Y ×1 P
(1)
⊥

×2 P
(2)
⊥

×3 P
(3)
⊥

. (9)

The radar signals are reconstructed from the tensor Ỹ using Eq. (7),

and then DS beamforming is applied to form the image of the scene.
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4. RESULTS AND DISCUSSIONS

Two sets of experiments are performed to validate the proposed wall

clutter mitigation method using simulated and real data. For com-

parison purposes, five different wall clutter mitigation techniques

are tested, namely background subtraction, spatial filtering, entropy-

based technique, SVD-based method, and DPSS-based method. The

effectiveness of wall clutter mitigation is measured using the im-

provement factor (IF):

IF = 10 log

(
TCRo

TCRi

)
, (10)

where TCRo and TCRi are, respectively, the target-to-clutter ratios

of the formed image with and without wall clutter mitigation. The

TCR of a radar image is calculated as

TCR =

1
Nt

∑
q∈At

|I(q)|2

1
Nc

∑
q∈Ac

|I(q)|2
, (11)

where At is the target region, Ac is the clutter region defined as

the entire image excluding the target region, and Nc and Nt are the

number of pixels in the clutter and target regions, respectively.

4.1. Simulated Scene

The proposed method is tested using a simulated TWRI scene con-

taining two targets behind a wall. The simulations are performed us-

ing XFDTD software. A 31-element antenna array of length 1.2 m is

synthesized for TWRI. A homogeneous wall of thickness 1.5 m and

a dielectric constant 7.76 is placed in front of the radar at a standoff

distance of 1.5 m. Since it is difficult to have perfect alignment be-

tween the antenna array and the wall surface in practice, the antenna

array is deliberately tilted at an angle of 5◦ with respect to the wall

surface. Two square dihedrals of area 0.16 m2 are placed at (-0.6 1.6)

and (0.6, 0.8) m behind the wall. The scene behind the wall is inter-

rogated using a modulated Gaussian pulse with a center frequency

of 1.5 GHz as an excitation signal. The time domain response is

then converted into a stepped-frequency signal with 201 frequencies

covering the frequency band [2, 3] GHz.

Figure 1 depicts the images obtained after performing wall clut-

ter mitigation using different methods. All six wall clutter mitigation

methods suppress the strong wall returns, but some methods achieve

clearer images than others. Background subtraction produces the

least cluttered image, Fig. 1(a), whereas spatial filtering yields an

image with the most wall clutter, Fig. 1(b). Spatial filtering performs

poorly because the antenna array is not perfectly parallel to the wall

surface. The entropy-based method produces an image with residual

wall reverberations, due to misalignment of the antenna, Fig. 1(c).

On the other hand, the DPSS-based method successfully remove the

wall returns and the reflections from the closeby target, Fig. 1(d).

This is because any reflections located between the antenna position

and a distance of 1.5 m away from the front surface of the wall are

removed. The subspace approaches based on SVD and HOSVD are

very effective in removing the wall returns, Figs. 1(e) and (f), with

the latter producing a much clearer image. The IFs of the formed

images depicted in Fig. 1 are listed in the second column of Table 1.

Clearly, background subtraction achieves the highest IF, followed by

the proposed tensor-based method. Next, the wall clutter mitigation

methods are tested using real radar measurements.
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Fig. 1. Images of the synthesized scene obtained using different

wall clutter mitigation methods: (a) background subtraction, (b) spa-

tial filtering, (c) entropy-based method, (d) DPSS-based method, (e)

SVD-based method and (f) proposed tensor-based method. The tar-

get is circled by a white rectangle.

Table 1. Improvement factor of the wall clutter mitigation methods.

Approach Simulated scene Drywall scene

Proposed method 7.36 dB 24.86 dB

Background subtraction 10.44 dB 24.50 dB

SVD-based method [19] 7.01 dB 25.34 dB

Spatial filtering [14] 3.96 dB 10.24 dB

Entropy time gating [21] 5.67 dB 4.66 dB

DPSS-based method [22] 4.44 dB 25.46 dB

4.2. Real TWRI Scene

Radar signals are collected from a TWRI system in the Radar Imag-

ing Lab of the Center for Advanced Communications at Villanova

University. The TWRI scene comprises a drywall, which is built

from a wooden frame, plywood, and gypsum wallboard. The scene

comprises three dihedrals, four trihedrals, a sphere, and a tophat

placed at different locations behind the wall, as shown in Fig. 2. A

69-antenna array of length 1.5 m is used to interrogate the scene with

a stepped-frequency signal of 1 GHz bandwidth centered at 2.5 GHz.

A full description of the experimental setup and the specification of

the imaging system is given in [30].
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Dihedral 12" x 12"

Trihedral 3" 

Antenna array

Wall

Sphere 12"

3" Cylinder

Trihedral 6" 
6.1m

5.7m

4.3m

5.5m

4.9m

2.5m
2m

3m

3.7m

Fig. 2. Ground-truth image of the real TWRI scene.

The six wall clutter mitigation methods were tested on the real

radar data. Figure. 3 presents the beamformed images obtained using

different wall clutter mitigation methods. Spatial filtering and the

entropy-based method fail to reveal all nine targets, Figs. 3(b) and

(c). This is because the wall is heterogeneous, hence invalidating

the assumption that the EM wall signature are invariant with antenna

location. The other wall clutter mitigation methods are all effective

in suppressing the wall returns. In the third column of Table 1, the

DPSS- and SVD-based methods achieve slightly better IF than the

proposed tensor-based method as both methods employ a threshold

technique to remove the wall reflections. If the same threshold used

in the DPSS-based technique is applied to HOSVD, the IF of the

proposed tensor-based method improves to 26.55 dB.

5. CONCLUSION

A tensor-based subspace projection method was proposed for TWRI

to mitigate the wall clutter induced by both homogeneous and het-

erogenous walls. The radar signals received by the antenna array are

converted into Hankel matrices, which are then stacked one behind

the other to form a tensor. HOSVD and a classification technique

are then employed to determine the singular vectors spanning the

multilinear wall subspace. For wall clutter mitigation, the data ten-

sor is projected onto the subspace orthogonal to the wall subspace.

Experimental results using simulated and real data demonstrate that

the proposed method can be very effective in removing wall clutter

without relying on prior knowledge of the background scene.

Acknowledgment

The authors would like to thank Prof. Moeness Amin and Dr. Fauzia

Ahmad from the Center of Advanced Communications at Villanova

University, Villanova, PA, USA, for providing the experimental data.

This work is supported by a grant from the Australian Research

Council (ARC).

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

-2 -1 0 1 2
0

1

2

3

4

5

6

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

 

 

-2 -1 0 1 2
0

1

2

3

4

5

6

-25

-20

-15

-10

-5

0

(a) (b)

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

-2 -1 0 1 2
0

1

2

3

4

5

6

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

 

 

-2 -1 0 1 2
0

1

2

3

4

5

6

-25

-20

-15

-10

-5

0

(c) (d)

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

-2 -1 0 1 2
0

1

2

3

4

5

6

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

 

 

-2 -1 0 1 2
0

1

2

3

4

5

6

-25

-20

-15

-10

-5

0

(e) (f)

Fig. 3. Images of the drywall scene obtained using different wall

clutter mitigation methods: (a) background subtraction, (b) spatial

filtering, (c) entropy-based method, (d) DPSS-based method, (e)

SVD-based method and (f) proposed tensor-based method.
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