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ABSTRACT

Recently proposed multiple input multiple output radars based on
matrix completion (MIMO-MC) employ sparse sampling to reduce
the amount of data forwarded to the radar fusion center, and as such
enable savings in communication power and bandwidth. This pa-
per proposes designs that optimize the sharing of spectrum between
MIMO-MC radars and MIMO communication systems, so that the
latter interferes minimally with the former. First, the communication
system transmit covariance matrix is designed to minimize the effec-
tive interference power (EIP) at the radar receiver, while maintaining
certain average capacity and transmit power for the communication
system. Two approaches are proposed, namely a noncooperative and
a cooperative approach, with the latter being applicable when the
radar sampling scheme is known at the communication system. Sec-
ond, a joint design of the communication transmit covariance ma-
trix and the MIMO-MC radar sampling scheme is proposed, which
achieves even further EIP reduction.

Index Terms— Collocated MIMO radar, matrix completion,
spectrum sharing

1. INTRODUCTION

The operating frequency bands of communication and radar systems
often overlap, causing one system to exert interference to the other.
For example, the high UHF radar systems overlap with GSM com-
munication systems, and the S-band radar systems partially overlap
with Long Term Evolution (LTE) and WiMax systems [1–3]. Spec-
trum sharing is a new line of work that targets at enabling radar and
communication systems to share the spectrum efficiently by mini-
mizing interference effects [2–7].

This paper investigates the problem of spectrum sharing be-
tween a MIMO communication system and a matrix completion
(MC) based, collocated MIMO radar (MIMO-MC) system [8–10].
MIMO radars transmit different waveforms from their transmit
(TX) antennas, and their receive (RX) antennas forward their mea-
surements to a fusion center for further processing. Based on the
forwarded data, the fusion center populates a matrix, referred to as
the “data matrix”, which is then used by standard array processing
schemes for target estimation. For a relatively small number of
targets, the data matrix is low-rank [8], thus allowing one to fully
reconstruct it (under certain conditions) based on a small, uniformly
sampled set of its entries. This observation is the basis of MIMO-
MC radars; the RX antennas forward to the fusion center a small
number of pseudo-randomly sampled values of the target returns,
along with their sampling scheme, each RX antenna partially filling
a column of the data matrix. Subsequently, the full data matrix is
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recovered using MC techniques. MIMO-MC radars maintain the
high resolution of MIMO radars, while at the same time require sig-
nificantly fewer data to be communicated to the fusion center, thus
enabling savings in communication power and bandwidth [8–10].
Compared to the compressive sensing (CS) based MIMO radars,
MIMO-MC radars achieve data reduction while avoiding the basis
mismatch issues inherent in CS-based approaches [11].

In this paper, the MIMO-MC radar system is considered as the
primary user of the channel, while the MIMO communication sys-
tem is the secondary user. First, for a fixed uniformly random radar
subsampling scheme, the communication system optimally designs
its transmit covariance matrix so that its effective interference pow-
er (EIP) exerted to the radar RX node is minimized, while its own
average communication capacity and transmit power are kept at a
prescribed level. In doing so, two approaches are proposed, namely,
a cooperative and a noncooperative approach, depending on whether
the communication system has knowledge of the MIMO-MC radar
sampling instances. It is shown that when the MIMO-MC radar sam-
pling scheme is known to the communication system, the EIP can be
greatly reduced, especially at low subsampling rates. Second, a joint-
design of the radar sampling scheme and the communication system
transmit covariance matrix is proposed, targeting at minimizing the
EIP at the radar RX node. Alternating optimization is employed
to solve the optimization problem. The candidate sampling scheme
needs to ensure that the resulting data matrix can be completed. Re-
cent work [12] indicates that for matrix completion the sampling
locations should correspond to a binary matrix with large spectral
gap. To reduce the complexity of the search, we propose to search
for the optimum sampling matrix among matrices which are row and
column permutations of an initial sampling matrix with large spec-
trum gap. Even before any design is implemented, the MIMO-MC
radar is expected to be less susceptible to interference than plain MI-
MO radars; this is because the interference affects only some entries
of the data matrix. As it is shown in the paper, by appropriately de-
signing the communication TX waveforms and/or the radar sampling
scheme, the interference can be further reduced.

The paper is organized as follows. Section 2 introduces the
signal model when the MIMO-MC radar and communication sys-
tems are coexisted. The problem of MIMO communication sharing
spectrum with MIMO-MC radar is studied in Sections 3 and 4. Nu-
merical results, discussions and conclusions are provided in Sections
5-7.
Notation: CN (µ,Σ) denotes the circularly symmetric complex
Gaussian distribution with mean µ and covariance matrix Σ. | · | and
Tr(·) denotes the matrix determinant and trace, respectively. The set
N+
L is defined as {1, . . . , L}. N (A) and R(A) denote the null and

row spaces of matrix A, respectively. Subscripts ·m and n· denote
the m-th column and the n-th row of a matrix, respectively.
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2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MIMO communication system which coexists with a
MIMO-MC radar system as shown in Fig. 1. The radar system
operates as the primary system for target detection/estimation. The
communication system shares the same carrier frequency as a sec-
ondary system. The MIMO-MC radar operates in two phases; in the
first phase the TX antennas transmit and the RX antennas receive,
while in the second phase, the RX antennas forward their measure-
ments to a fusion center. The communication system interferes with
the radar system during both phases. In the following, we will ad-
dress the interference during the first phase only. The interference
during the second phase can be viewed as the interference between
two communication systems, and addressing this problem has been
covered in the literature [13, 14].

Suppose that the two systems have the same symbol rate and are
synchronized in sampling time (see Section 5 for the mismatched
case). Let l denote the sampling time instance according to Nyquist
rate sampling. We do not assume perfect carrier phase synchroniza-
tion between the two systems. The signal received by the radar and
communication RX antennas can be respectively expressed as

yR(l) = Ωl ◦ [Ds(l) + ejα2G2x(l) + wR(l)], (1a)

yC(l) = Hx(l) + ejα1G1s(l) + wC(l), ∀l ∈ N+
L , (1b)

where

• Ωl is a random sampling vector with binary entries and ◦
denotes the Hadamard product.

• yR/C(l) and wR/C(l) respectively denote the received signal
and the additive noise at the radar/communication RX anten-
nas. It is assumed that wR/C ∼ CN (0, σ2

R/CI).

• D ∈ CMr,R×Mt,R denotes the target response matrix, where
Mr,R and Mt,R denote respectively the number of RX and
TX antennas at the MIMO radar. D is low-rank and depend-
s on the target reflectivity, angle of arrival and target speed
(details can be found in [8, 9]).

• H ∈ CMr,C×Mt,C denotes the communication channel,
where Mr,C and Mt,C denote respectively the number of
RX and TX antennas of the communication system [13];
G1 ∈ CMr,C×Mt,R denotes the interference channel from
the radar TX antennas to the communication system RX an-
tennas [3, 4, 7]; G2 ∈ CMr,R×Mt,C denotes the interference
channel from the communication TX antennas to the radar
RX antennas. It is assumed that the channels remain the same
over L time-slots.

• s(l) and x(l) respectively denote the transmit vector at the
radar and the communication TX antennas;

• ejα1 and ejα2 denote the unknown phase offsets between the
carriers of the radar and the communication systems.

Grouping L samples together, (1) becomes
YR = Ω ◦ (DS + ejα2G2X + WR), (2a)

YC = HX + ejα1G1S + WC , (2b)

where YR , [yR(1), . . . ,yR(L)]; the matrices S,X,YC , WR,
and WC are similarly defined; S contains the radar waveforms,
which are typically orthogonal, e.g., Hadamard and Gaussian or-
thogonal [10]; the columns of X are codewords from the code-book
of the communication system. The capacity achieving codeword-
s are Gaussian, i.e., x(l) ∼ CN (0,Rxl); Ω is an Mr,R × L di-
mensional random sampling matrix with binary entries, whose l-
th column is Ωl. Only the nonzero entries of matrix YR are for-

… …

… …

Collocated MIMO radar

Communication TX Communication RX

Fig. 1. A MIMO communication system sharing spectrum with a
collocated MIMO radar system

warded to the fusion center. The subsampling rate p is defined as
‖Ω‖0/LMr,R.

It is assumed that the MIMO channels H, G1 and G2 are per-
fectly known at the communication TX. In practice, the channel state
information can be periodically communicated among the commu-
nication receiver, transmitter and the radar system through a pilot
channel [3, 15]. The communication system aims at minimizing its
interference to the MIMO-MC radar while maintaining its average
capacity over L time-slots by adapting its transmit resources in both
time and spatial domain.

3. DESIGN OF COMMUNICATION SYSTEM WAVEFORMS

In this section, we design the communication transmit waveforms,
and in particular their covariance matrix, to minimize the interfer-
ence power at the radar RX node while satisfying the communica-
tion rate and power constraints of the communication system. The
total transmit power of the communication TX antennas equals

E{Tr(XXH)} = E

{
Tr

(
L∑
l=1

x(l)xH(l)

)}
=

L∑
l=1

Tr(Rxl),

where Rxl , E{x(l)xH(l)}.
According to (2a), the total interference power (TIP) exerted at

the radar RX node equals

TIP , E{Tr(G2XXHGH
2 )} =

∑L

l=1
Tr
(
G2RxlG

H
2

)
. (3)

Since the radar only forwards part of YR to the fusion center, only
the term Ω ◦ (G2X) represents effective interference to the radar
system. Based on this observation, we define the effective interfer-
ence power (EIP) at the radar RX node as

EIP , E
{

Tr
(
Ω ◦ (G2X) (Ω ◦ (G2X))H

)}
=E

{
Tr
(

[G21x(1) . . .G2Lx(L)][G21x(1) . . .G2Lx(L)]H
)}

=E

{
Tr

(
L∑
l=1

G2lx(l)xH(l)GH
2l ]

)}
=

L∑
l=1

Tr
(
G2lRxlG

H
2l

)
(4)

where G2l , ∆lG2 with ∆l = diag(Ωl). We note that the EIP
in time-slot l contains the interference to radar RX antennas corre-
sponding to “1”s in Ωl only.

In the model of (2), both the effective interference chan-
nel G2l and interference power at the communication receiver
Rintl , G1s(l)sH(l)GH

1 vary slot by slot. The communication
system need to use different covariance matrices Rxl’s to match
the variation of G2l to minimize the effective interference to the
radar system. The channel can be equivalently viewed as a fast
fading channel with perfect channel state information at both the
transmitter and receiver [16, 17]. Similar to the definition of ergodic
capacity [16], the achieved capacity is the average over L time-slots:

AC({Rxl}) ,
1

L

∑L

l=1
log2

∣∣∣I + R−1
wl HRxlH

H
∣∣∣ , (5)

where {Rxl} denotes the set of all Rxl’s and and Rwl , Rintl+σ
2
CI
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for all l ∈ N+
L .

In the following we will consider two spectrum sharing ap-
proaches between the communication and radar systems, namely,
a noncooperative and a cooperative, depending on whether the
communication system knows the radar sampling scheme. The per-
formance improvement is expected to be higher under higher level
of cooperation at the cost of reduced security.

In the noncooperative approach, the communication system has
no knowledge of Ω. Therefore, it cannot obtain the expression of
EIP as in (4). In this case, the communication system will design its
covariance matrix to minimize the TIP in (3) as follows

(P0) min
{Rxl}�0

TIP({Rxl}) s.t.
∑L

l=1
Tr (Rxl) ≤ Pt (6a)

AC({Rxl}) ≥ C, (6b)
where the constraint of (6a) restricts the total transmit power at the
communication TX to be no larger than Pt. The constraint of (6b)
restricts the communication average capacity during L time-slots to
be at least C, in order to provide reliable communication and avoid
service outage. {Rxl} � 0 imposes the positive semi-definiteness
on the solution. Let us denote by X0 the feasible set determined
by the above three constraints. Problem (P0) is convex and can be
solved using the interior point method.

The power constraints of (6a) and (6b) are jointly applied for
all L time-slots. The extension to constraints individually applied
for each time-slot is straightforward because the convexity of the
problem is preserved. Problem (P0) is a variant of the Problem (P6)
in [13] for multichannel spectrum sharing in cognitive radio network.

In the cooperative approach, the MIMO-MC radar shares its
random sampling scheme with the communication system. Now,
the spectrum sharing problem can be formulated as

(P1) min EIP({Rxl}) s.t. {Rxl} ∈ X0. (7)
Problem (P1) has exactly the same constraints as (P0). The follow-
ing theorem compares the minimum EIP achieved by two approach-
es under the same communication constraints.

Theorem 1. For any Pt and C, the EIP achieved by the cooperative
approaches in (P1) is less or equal than that of the noncooperative
approach via (P0).

Proof. Let {R∗0xl } and {R∗1xl } denote the solution of (P0) and (P1),
respectively. We know that {R∗0xl } satisfies the constraints in (P1),
which means that {R∗0xl } is a feasible point of (P1). The optimal
{R∗1xl } achieves an objective value no larger than any feasible point,
including {R∗0xl }, does. It holds that EIP({R∗1xl }) ≤ EIP({R∗0xl }),
which proves the claim.

There are certain scenarios in which the cooperative approach
outperforms significantly the noncooperative one in terms of EIP.
Let us denote by φ1 the intersection of N (G2l) and R(R

1/2
wl H),

and by φ2 the intersection of N (G2) and R(R
1/2
wl H). We know

that φ2 ⊆ φ1. Consider the case where φ1 is nonempty while φ2

is empty. This happens with high probability when Mr,R ≥ Mt,C

but pMr,R is much smaller than Mt,C . Problem (P1) will guide
the communication system to focus its transmission power along the
directions in φ1 to satisfy both communication system constraints
while introducing zero EIP to the radar system. On the other hand,
since φ2 is empty, Problem (P0) will guide the communication sys-
tem transmit power along directions that introduce nonzero EIP.

4. JOINT COMMUNICATION AND RADAR SYSTEM
DESIGN FOR SPECTRUM SHARING

In the above described spectrum sharing strategies, the MIMO-
MC radar operates with a predetermined pseudo random sampling
scheme. In this section, we consider a joint design of the communi-
cation system transmit covariance matrices and the MIMO-MC radar
random sampling scheme, i.e., Ω. The candidate sampling scheme
needs to ensure that the resulting data matrix can be completed. This
means that ΩI is either a uniformly random subsampling matrix [18]
or a matrix with a large spectral gap [12].

Recalling that G2l = ∆lG2, the EIP is rewritten as:

EIP =

L∑
l=1

Tr
(
∆lG2RxlG

H
2 ∆H

l

)
=

L∑
l=1

Tr
(
∆lG2RxlG

H
2

)
.

The joint design scheme is formulated as follows

(P2) arg min
{Rxl},Ω binary

EIP =
∑L

l=1
Tr
(
∆lG2RxlG

H
2

)
s.t. {Rxl} ∈ X0,∆l = diag(Ωl), ‖Ω‖0 = bpLMr,Rc.

The above problem is nonconvex. A solution can be obtained via
alternating optimization. Let ({Rn

xl},Ωn) be the variables at the
n-th iteration. We alternatively solve the following two problems:

{Rn
xl} = arg min

{Rxl}∈X0

∑L

l=1
Tr
(
∆n−1
l G2RxlG

H
2

)
, (8a)

{Ωn} = arg min
Ω binary

∑L

l=1
Tr
(
∆lG2R

n
xlG

H
2

)
, (8b)

s.t. ∆l = diag(Ωl), ‖Ω‖0 = bpLMr,Rc.
The problem of (8a) is convex and can be solved efficiently. To avoid
the intermediate variable {∆l}, we can reformulate (8b) as follows

Ωn = arg min
Ω binary

Tr(ΩTQn) s.t. ‖Ω‖0 = bpLMr,Rc, (9)

where the l-th column of Qn contains the diagonal entries of
G2R

n
xlG

H
2 . Recall that the sampling matrix Ω is also required

to have large spectral gap needed for good matrix completion per-
formance [12]. However, it is difficult to incorporate such condition
in the above optimization problem.

Noticing that row and column permutation of the sampling ma-
trix would not affect its singular values and thus the spectral gap, we
propose to optimize the sampling scheme by permuting the rows and
columns of an initial sampling matrix Ω0:

Ωn = arg min
Ω

Tr(ΩTQn) s.t. Ω ∈ ℘(Ω0), (10)

where ℘(Ω0) denotes the set of matrices obtained by arbitrary row
and/or column permutations. The Ω0 is generated with binary en-
tries and bpLMr,Rc ones. Meanwhile, Ω0 has large spectral gap.
One of the matrices that exhibit large spectral gap with high prob-
ability is the uniformly random sampling matrix [12]. Brute-force
search can be used to find the optimal Ω. However, the complexity
is very high since |℘(Ω0)| = Θ(Mr,R!L!). By alternately optimiz-
ing w.r.t. row permutation and column permutation on Ω0, we can
solve (10) using a sequence of linear assignment problems [19].

To optimize w.r.t. column permutation, we need to find the best
one-to-one match between the columns of Ω0 and the columns of
Qn. We construct a cost matrix Cc ∈ RL×L with [Cc]ml ,
(Ω0
·m)TQn

·l. The problem turns out to be a linear assignment prob-
lem with cost matrix Cc, which can be solved in polynomial time
using the Hungarian algorithm [19]. Let Ωc denote the column-
permutated sampling matrix after the above step. Then, we per-
mute the rows of Ωc to optimally match the rows of Qn. Simi-
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larly, we construct a cost matrix Cr ∈ RMr,R×Mr,R with [Cr]ml ,
Ωc
m·(Q

n
l·)
T . Again, the Hungarian algorithm can be used to solve

the row assignment problem. The above column and row permuta-
tion steps are alternately repeated until Tr(ΩTQn) changes relative-
ly little.

It is easy to show that the EIP decreases during the alternating it-
erations between (8a) and (8b). The proposed joint-design spectrum
sharing strategy is expected to further reduce the EIP at the radar RX
node compared to the methods in Section 3.

5. ABOUT ASYNCHRONOUS SYSTEMS

In Section 2, the sampling rate of the radar system is assumed to
match with the symbol rate of the communication system. Here we
consider the mismatch cases. Denote fRs and fCs the radar sam-
pling rate and the communication symbol rate, respectively. In the
case of fRs < fCs , the interference arrived at the radar receiver will
be down-sampled. The communication symbols which are not sam-
pled by the radar receiver would introduce zero interference power
to the radar RX. Therefore, we only need to design the communi-
cation transmit covariance of the communication waveforms which
are sampled by the radar receiver. In the case of fRs > fCs , the in-
terference arrived at the radar receiver will be over-sampled. One
individual communication symbol will introduce interference to the
radar system in bfRs /fCs c consecutive time-slots. Correspondingly,
in the expression of the EIP, each individual communication trans-
mit covariance matrix will be weighted by the sum of interference
channels for bfRs /fCs c radar time-slots instead of one single inter-
ference channel. In the above mismatched cases, the spectrum shar-
ing problem still follows similar form as in Section 3 and 4. Thus,
the proposed techniques in this paper can be readily applied.

6. NUMERICAL RESULTS

For the simulations, we set the number of time-slots L = 32 and
the noise variance σ2

C = 0.01. The MIMO radar system consists of
collocated TX and RX antennas forming half-wavelength uniform
linear arrays. The normalized Gaussian orthogonal waveforms [8] is
used. There is one far-field stationary target at angle 30◦ w.r.t. to
the arrays. For the radar system, noise is added at SNR= 25dB. For
the communication capacity and power constraints, we use C = 8
bits/symbol and Pt = L (the power is normalized by the power
of radar waveform). The same uniformly random sampling scheme
Ω0 is adopted by the radar in the noncooperative and cooperative
spectrum sharing (SS) methods. The joint-design SS method us-
es the same sampling matrix as its initial sampling matrix. The
TFOCUS package [20] is used for low-rank matrix completion at
the radar fusion center. The interference channels G1 and G2 are
generated with independent entries distributed as CN (0, 0.1). The
channel H has independent entries, distributed as CN (0, 1). The
communication covariance is optimized according to different cri-
teria of Sections 3 and 4. The obtained Rxl is used to generate
x(l) = R

1/2
xl randn(Mt,C , 1). We use the EIP and MC relative

recovery error as the performance metrics, with the later defined
as ‖DS − D̂S‖F /‖DS‖F . For comparison, we also implement
a “selfish communication” scenario, where the communication sys-
tem minimizes the transmit power to achieve certain average capac-
ity without any concern about the interferences it exerts to the radar
system.

In the first scenario, we use Mt,R = 4,Mr,R = Mt,C =
8,Mr,C = 4. We plot the EIP results for 5 different realizations

of Ω0 in Fig. 2(a). For better visualization, Fig. 2(b) shows the
relative recovery errors averaged over all 5 realizations of Ω0. The
cooperative spectrum sharing (SS) approach (see (P1)) outperforms
its noncooperative counterpart (see (P0)) in terms of both EIP and
MC recovery error. As discussed in Section 3, the EIP is significant-
ly reduced by the cooperative SS when p < 0.5, i.e., where pMr,R

is much smaller than Mt,C . For the cooperative SS, the MC recov-
ery performs well even when p = 0.4. The cooperative SS performs
almost the same as the joint-design method in this scenario.

In the second scenario, we setMt,R = 16,Mr,R = 32,Mt,C =
4,Mr,C = 4. In Fig. 3(a), we plot the EIP corresponding to 5 differ-
ent realizations of Ω0. Again, Fig. 3(b) shows the relative recovery
error averaged over all realizations of Ω0. The cooperative SS ap-
proach outperforms the noncooperative SS only marginally. This is
due to the fact that G2l is also full rank. The the joint-design method
for SS of Section 4 optimizes Ω starting from the sampling matrix
used by the other three methods. However, it achieves much smaller
EIP and relative recovery error than the other three approaches. This
validates the effectiveness of the proposed joint-design method.

We should note that when p decreases, the null space of G2l

expands with high probability and the EIP of the cooperative SS ap-
proach is reduced. However, if p is too small, the MC recovery at the
fusion center fails. In the above scenarios, the optimal range of p is
[0.4, 0.6], where the proposed cooperative and joint-design SS meth-
ods reduce the EIP by at least 20% over the “selfish communication
method”.
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Fig. 2. Spectrum sharing under different sub-sampling rates.
Mt,R = 4,Mr,R = Mt,C = 8,Mr,C = 4.
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7. CONCLUSIONS

We have considered spectrum sharing between MIMO communica-
tion and MIMO-MC radar systems. We have proposed several strate-
gies to to reduce the interference from the communication TX to the
radar. MC-MIMO radars are less susceptible to interference than
MIMO radars, due to the fact that the interference affects only some
entries of the data matrix. By appropriately designing the communi-
cation system waveforms, the interference can be further reduced by
at least 20%. Both the theoretical and simulation results have shown
that optimal design of the communication waveforms and the sam-
pling scheme at the radar RX antennas can lead to further reduction
of the interference.
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