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ABSTRACT

In indoor wireless localization, navigation and communications,
knowledge of the �oor plan is valuable side information and pro-
vides more reliable performance. Such information may not be
available. Estimating indoor maps using sensor networks and time
delay measurements, i.e., without angular information, is a challeng-
ing task. In this paper, a novel algorithm is developed to solve the
problem of mapping and measurement clustering. The algorithm is
applicable to wireless and acoustic networks with high resolution
time delay measurements.

Index Terms— Mapping, Localization, Sensor Networks

1. INTRODUCTION

Geometrical models and maps of the indoor environment are vital to
many applications such as indoor localization, emergency services
and robot navigation. The performance of indoor wireless localiza-
tion could be improved by exploiting the multipath propagation of
radio signals. Such techniques require a map of the environment and
clustering of the measurements [1–4]. In this paper, map denotes
the geometry of the re�ecting objects in a propagation environment.
Multipath radio propagation may be modeled as a superposition
of a line-of-sight (los) component, several deterministic specular
components, and a random noise component [5, chap. 7]. Specular
multipath components (mpcs) contain rich geometric information
which can be used to estimate a map of the environment.

In this paper, the problem of estimating the geometry of the
environment given high resolution time delay estimates between a
number of nodes is addressed. Time delay estimates corresponding
to single-bounce re�ection (sbr) paths, i.e., �rst-order re�ections,
between the nodes and re�ecting objects are employed. If angular
information, e.g., directions-of-arrival of radio transmissions, are
available the problem becomes much simpler. However, in this paper,
only distance measurements obtained by time delay estimation are
considered as inputs. In wireless networks, the lengths of specular
paths can be estimated using high resolution time delay estimation
techniques [6]. In order to get absolute distance estimates, a precise
network synchronization algorithm is also needed to compensate
for clock o�sets and skews [7].

There is an ongoing research on ultra wide band (uwb) indoor
mapping. A radar solution with simple antenna array was proposed
in [8]. However, most wireless radios do not support radar opera-
tion; and monostatic radar solutions are not applicable to a network
setup. Some algorithms were developed exclusively for rectangular
rooms [9, 10]. They required testing all possible combinations of the
measurements and walls to solve data association problem. Such a
combinatorial complexity limits the scalability to a few nodes. The
method proposed in [11] required delay estimation of second order
re�ections, which are in general very weak. It also had combinatorial
complexity. An attempt to generate a 3D map by �rst estimating the

angular information from time delays was presented in [12], which
did not succeed to create a complete map. An approach based on
synthetic aperture radar (sar) process was proposed in [13]. They
estimated scattering coe�cient for every point in the coverage area
of network. The method was based on averaging in delay domain,
and did not employ a geometric model for re�ections. Hence, it
required a large number of measurements, and did not estimate a
geometric map for the environment. The problem of indoor mapping
using time delay measurements has been studied recently in the
�eld of acoustics [14, 15]. However, they did not develop a complete
algorithm for the case of multiple re�ectors.

The contribution of this paper is to develop a low-complexity
clustering algorithm to detect multiple re�ectors and estimate their
geometry using time delay measurements. The proposed algorithm
employs image processing techniques to detect re�ectors and es-
timate their geometry, followed by an iterative re�nement stage.
The algorithm has polynomial complexity, and only requires one
snapshot of delay measurements between few nodes to estimate a
map. To the best of authors’ knowledge, there is no method in the
literature with polynomial complexity to estimate the geometry of
multiple re�ectors using time delay measurements.

The rest of this paper is organized as follows. Section 2 states the
problem and gives a geometric measurements model. The clustering
algorithm based on Hough transform is described in section 3, and
the re�nement stage of the algorithm in section 4. A short discussion
on the algorithm is included in section 5. Simulation results are
presented in section 6. Finally, section 7 concludes the paper.

2. PROBLEM STATEMENT AND MODELING

Consider a wireless network of n users/nodes with known positions
situated in a room with unknown �oor plan, see �gure 1. The nodes
are transmitting and receiving signals cooperatively to estimate
all pairwise radio channels, i.e., time delays of propagation paths,
with high resolution. The problem is to estimate a map of the room
using time delay estimates. It is assumed that the lengths of all,
or most, sbr paths are given. A sbr path is a ray between two
nodes with a single bounce at a re�ector. Second or higher order
re�ections are not considered in the model because of their complex
geometry and larger estimation errors [1]. Moreover, scattering
and complex propagation mechanisms are not considered in the
employed geometric model. The contributions of such processes
may be incorporated into a random noise component and distance
estimation error. The estimated path lengths are modeled as

r̂ (u ,v ,i ) = r (u ,v ,i ) + e , (u ,v , i ) ∈ SSBR , (1)

where r (u ,v ,i ) is the Euclidean distance of the ray between nodes
u ,v re�ected at re�ector i , and SSBR is the set of all such 3-tuples.
Distance estimation error is modeled with a an additive zero-mean
random term e . With n nodes andm re�ectors, there aremn(n−1)/2
distinct sbr paths at most, i.e., |SSBR | = O (mn2). The re�ectors are
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Fig. 1: A wireless network with �ve nodes situated in a room with
four walls. The re�ectors/walls are modeled with line segments.
Single-bounce propagation paths between nodes are shown with
dotted lines.

modeled in two dimensional space with a series of line segments,
similar to a �oor plan when the walls are piecewise straight. The
objective is to �nd the geometry of such line segments given the
set of sbr distance estimates. The locus of re�ection points for a sbr
path is an ellipse with foci at node positions and major axis equal
to the path length. The re�ector line is a tangent to such ellipse at
re�ection point [14], see �gure 2. Hence, the geometry of re�ector
lines may be estimated by �nding common tangents to the ellipses
corresponding to each re�ector. All ellipses corresponding to the
sbr paths of �gure 1 are illustrated in �gure 3.

x2x1

r

θ
θ

Fig. 2: The locus of a re�ection point r for an sbr path with a
given length is an ellipse with foci at node positions. The re�ector
line is a tangent to this ellipse.

In the Cartesian coordinate system, an ellipse is de�ned as the
set of points (x ,y) which satisfy the general equation of a conic
section for non-degenerate cases, given by

ax 2 + bxy + cy2 + dx + ey + f = 0, (2)

provided that b2 − 4ac < 0. The general equation’s coe�cients can
be found given the foci, i.e., node positions, and the major axis r of
the ellipse, i.e., sbr path length. Using homogeneous coordinates, the
equation of an ellipse can be simpli�ed, and the equation of a tangent
line to ellipse may be formulated conveniently. In homogeneous
coordinates, an ellipse is given by

C= {x ∈ �3 | xTCx = 0}, (3)

where x = [λx , λy , λ], and C ∈ �3×3 is a conic matrix given by

C =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f

 . (4)
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Fig. 3: The locus of re�ection points for sbr delay estimates are
ellipses; delay estimation error variance is 0.01. The geometry of
re�ector lines can be found by �nding common tangents to the
corresponding ellipses.

A line l = [`1, `2, `3] in homogeneous coordinates is tangential to
an ellipse if and only if

lTC∗l = 0, (5)

where C∗ = |C|C−1 is the adjoint matrix of the conic matrix C. The
conic section de�ned by C∗ is called the line conic associated with
the point conic de�ned by C. A common tangent to a set of q ellipses
may be found by solving a system of quadratic equations given by
lTC∗j l = 0, j = 1, . . . ,q. Since the distance estimates are not error-
free, such a system of equations may not have an exact solution. The
estimate of a common tangent li may be obtained in least-squares
sense by minimizing the following cost function.

Ji (l) =
∑
j∈Si

∥∥∥∥lTC∗j l∥∥∥∥2
2
, (6)

where Si is the set of indices j of ellipses/paths corresponding to the
re�ector line li . The partitioning of ellipses or distance estimates
to such sets Si are not given in advance, and need to be found by a
clustering method.

3. INITIAL CLUSTERING

A variant of Hough transform [16] is used for initial clustering, i.e.,
�nding common tangents to ellipses. A technique developed in this
paper directly maps ellipse tangents to Hough space. The procedure
is summarized in table 1, and the di�erent stages are described in
this section.

Table 1 Initial clustering procedure
1: Sample tangent lines to every ellipse.
2: Quantize the lines and add to a Hough accumulator.
3: Detect intensity peaks by smoothing and thresholding.
4: Estimate cluster heads by averaging.
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3.1. Sampling

Hough transform maps a line in Cartesian coordinates to a point
(ρ , θ ) in Hough space, where ρ is the distance from the line to the
origin, and θ is the angle of the line with respect to y-axis. In this
paper, Hough transform is not computed for every single point
in Cartesian space. Each ellipse is uniformly sampled by �nding
hundreds of points on it. Then the tangent to an ellipse at each of
these points is transformed directly to Hough space. For every point
(x ,y) on an ellipse, the Hough transformation of the tangent line at
that point is given by

θ = <
(
tan−1m

)
+ sign(y −mx )π/2,

ρ =
∣∣∣x cosθ + y sinθ

∣∣∣ , (7)

wherem is the slope of tangent line at point (x ,y). The parametric
equation of an ellipse in Cartesian coordinates is given by

x (t ) = xc + α cos t cosφ − β sin t sinφ ,
y (t ) = yc + α cos t sinφ + b sin t cosφ . (8)

The slope of a tangent line to the ellipse at point t is given by

m(t ) =
β cos t cosφ − α sin t sinφ
−β cos t sinφ − α sin t cosφ . (9)

The sampling is done uniformly in angular domain t ∈ [o, 2π ).

3.2. Accumulation

All the transformed lines are then added to a Hough accumulator.
The accumulator is a grid of discrete points in �nite [ρ , θ] space. In
the accumulation process, for each line the value of closest bin in the
accumulator space is increased by one. This process is equivalent of
�nding a two-dimensional histogram with bins at the grid points.
The value of each point/bin in the accumulator space, determines the
number of lines mapped to that bin. The accumulator space, which
will be referred to as Hough image, can be further processed as a
grayscale image. The intensity peaks in the Hough image correspond
to the common tangents to ellipses. The Hough space is periodic
in θ direction, hence image processing techniques are applied after
circular padding.

3.3. Detection

A two-dimensional Gaussian low-pass �lter is applied to the ac-
quired Hough image to smooth out quantization noise and the error
in parameter space, i.e., distance estimates. Moreover, smoothing
enhances large-scale structures. After �ltration, the grayscale image
is converted to a binary image by thresholding. The thresholding
operation detects the intensity peaks in the Hough image. Then,
the binary image is processed by morphological dilation to expand
the areas of detected peaks. It also connects close-by regions and
smooths the boundaries. Detecting large regions around peaks, in-
stead of single points, is useful for later processing to mitigate errors
by averaging. The output of detection stage is a binary mask of the
clusters in Hough space.

3.4. Averaging

Each region in the binary mask corresponds to a common tangent.
Cluster heads, i.e., common tangents, are found by applying the bi-
nary mask to the original grayscale Hough image. Then, a weighted
center of mass for each region is found. Mass of each point is the

pixel value in the grayscale Hough image. The Euclidean distance
is used to �nd the center of mass. The extracted centroids are the
initial estimates of the common tangents. If there are k region in
the binary mask, the lines li , i=1, . . . , k are estimated as common
tangents.

4. ITERATIVE REFINEMENT

The estimates found by Hough transform method are usually good,
such that further processing may not improve them. However, an
iterative re�nement technique is proposed in this section to improve
the initial estimates when measurement error is small. The technique
consists of two steps, assignment and �tting. These two steps can be
run for a single or few iterations until convergence. Convergence
is achieved when there is no change in cluster memberships. The
maximum number of iterations can be �xed to a small number.

4.1. Assignment

Assigning measurements to cluster heads, also known as echo label-
ing, is done by assigning each ellipse to the closest cluster head, i.e.,
common tangent. The distances between each ellipse and all cluster
heads are found using the distance function given in (6). The cluster
label for ellipse Cj is found by

L j = arg min
i∈{1, . . . ,k}

∥∥∥∥lTiC∗j li∥∥∥∥
2
, (10)

where li , i=1, . . . , k are the estimated cluster heads in homogeneous
coordinates. The label sets for clusters are constructed as Si = {j |
L j = i}.

4.2. Fitting

In this re�nement stage, a new common tangent is found for each
cluster analytically. The algorithm is given in [14], which is summa-
rized as follows. The common tangent for cluster i is given by the
following optimization problem.

li = arg min
l

Ji (l) , (11)

where Ji (l) is a non-convex cost function given in (6). The global
optimum can be found by slicing the problem into orthogonal planes.
Any line in homogeneous coordinates intersects with one of the
planes `1 = 1 and `2 = 1. Slicing Ji (l) with the planes `1 = 1 and
`2 = 1, and then setting the partial derivatives to zero gives two sets
of local minima L1 and L2 as follows.

L1 =

{
l : ∂J (l)
∂`2

∣∣∣∣
`1=1
= 0 ∧

∂J (l)
∂`3

∣∣∣∣
`1=1
= 0

}
, (12)

L2 =

{
l : ∂J (l)
∂`1

∣∣∣∣
`2=1
= 0 ∧

∂J (l)
∂`3

∣∣∣∣
`2=1
= 0

}
, (13)

Each set contains the solutions for a system of two polynomials
of degree three, which has at most nine solutions. Since complex-
valued solutions are not acceptable, the union of real solutions in
these sets are denoted by xL. The global optimum is given by

li = arg min
l∈xL

Ji (l), i = 1, . . . , k . (14)

There are at most 18 points in xL to be evaluated. These estimates
of common tangents can be used as new cluster heads for iterative
re�nement.
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5. DISCUSSION

5.1. Complexity Analysis

The number of tangent lines found and added to Hough accumulator
is proportional to the number of sbr paths. The size of Hough space
does not depend on the number of nodes or paths. Therefore, image
processing steps in initial clustering method after quantization do
not depend on the problem size. In the iterative re�nement phase,
the number of iterations do not depend on the problem size. In both
assignment and �tting steps, the number of calculations for each of
m clusters is proportional to the number of sbr paths. Hence, the
overall complexity of the algorithm is m times the number of sbr
paths, which becomes O (m2n2).

5.2. High-order Re�ections

Separating sbr paths from higher-order specular paths is not studied
in this paper. Higher-order re�ections are typically more attenuated,
and can be mostly eliminated by thresholding. A number of methods
are available in the literature which �nd sbr paths by testing di�erent
combinations of detected specular paths [15]. Another approach
would be to start with an over-estimated model and eliminate higher-
order re�ections in the iterative re�nement stage.

6. RESULTS

Simulation results for di�erent stages of the algorithm are presented
in this section. In the following simulation, distance estimation error
is normally-distributed with zero mean and standard deviation of
0.1. Tangents to the ellipses shown in �gure 3 are sampled, with
1000 tangents to each ellipse, and added to a Hough accumulator.
The accumulator grid is 500×500 with ρ ∈ [0, 10] and θ ∈ [−π , π ].
Figure 4a shows the Hough image after Gaussian �ltering. The
parameters of Gaussian �lter, diameter= 15 and σ = 4, are chosen
experimentally to get best results. For better visualization of Hough
space, the ellipses are translated such that the origin is in the center of
map. Figure 4b shows Hough image after thresholding and dilation.
All clusters are detected in this image. Threshold value is found by a
simple heuristic approach. The values of bins in Hough accumulator
are sorted. Then, the k-th largest value with some large k is selected
as a threshold level, k = 200 in this simulation. A �at disk-shaped
structural elements, with radius=10, is used for dilation. This size
is chosen experimentally to get best results. Figure 5 shows the
initial estimates of the re�ector lines, along with the �nal estimates
after re�nement. The initial estimates are the centroids peak regions
in Hough space. The iterative stages of assignment and �tting,
improves the estimates. Solving a system of cubic equations is
not trivial. A numerical solver is used in this experiment to solve
the equations (12) and (13). The re�nement stage converge very
fast in two or three iterations. The performance of the algorithm
depends on the network geometry and distance estimation error.
The algorithm estimates unbounded lines instead of line segments,
which is su�cient for multipath-aided localization. Moreover, line
segments may be estimated by �nding the intersections of lines.

7. CONCLUSIONS

Building a map of environment using multipath delay measurements
is a challenging task. In this paper we formulated this problem as a
clustering task, and proposed a novel low-complexity algorithm to
solve it. The method starts with initial clustering based on a modi�ed
Hough transform. Then, an iterative re�nement stage converges
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Fig. 4: (a) Hough accumulator space with sampled tangent lines
after Gaussian �ltering. Intensity peaks indicate common tangents.
Note that θ is periodic, and −π and π are overlapping points. (b)
Binary mask of intensity peaks obtained after thresholding the
Hough accumulator and dilation. Detected peak regions at −π
and π belong to the same cluster.
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Fig. 5: Initial and �nal estimates of tangent lines. Iterative re�ne-
ment improves the estimates, and �nal results closely match the
true map.

to the �nal estimate of the map. The proposed algorithm can be
used for indoor mapping in wireless networks. Future studies will
address the problem of simultaneous localization and mapping in
wireless networks.

2427



8. REFERENCES

[1] Hassan Naseri, Màrio Costa, and Visa Koivunen, “Multipath-
aided cooperative network localization using convex optimiza-
tion,” 48th Annual Asilomar Conference on Signals, Systems, and
Computers, 2014, 2014.

[2] M. Froehle, Erik Leitinger, P. Meissner, and K. Witrisal, “Co-
operative multipath-assisted indoor navigation and tracking
(Co-MINT) using UWB signals,” IEEE ICC 2013 Workshop on
Advances in Network Localization and Navigation (ANLN), 2013.

[3] Li Li and Je�ery L Krolik, “Simultaneous target and multipath
positioning,” IEEE Journal of Selected Topics in Signal Processing,
vol. 8, no. 1, pp. 153–165, Feb 2014.

[4] R Zetik, H Yan, E Malz, S Jovanoska, G Shen, RS Thomä,
R Salman, T Schultze, R Tobera, I Willms, et al., “Cooperative
localization and object recognition,” UKoLoS – Ultra-Wideband
Radio Technologies for Communications, Localization and Sensor
Applications, pp. 978–953, 2013.

[5] Andreas F Molisch, Wireless communications, John Wiley &
Sons, 2010.

[6] Hassan Naseri, Màrio Costa, and Visa Koivunen, “A generalized
formulation for harmonic retrieval in correlated noise,” 48th
Annual Conference in Information Sciences and Systems (CISS
2014), Mar 2014.

[7] Hassan Naseri, Jussi Salmi, and Visa Koivunen, “Synchro-
nization and ranging by scheduled broadcasting,” IEEE Int’l
Conference on Acoustics, Speech and Signal Processing (ICASSP
2013), 2013.

[8] Tobias Deissler and Jörn Thielecke, “UWB SLAM with Rao-
Blackwellized Monte Carlo data association,” in Int’l Conference
on Indoor Positioning and Indoor Navigation (IPIN 2010). IEEE,
2010, pp. 1–5.

[9] Vincenzo La Tosa, Benoît Denis, and Bernard Uguen, “Joint
anchor-less tracking and room dimensions estimation through

IR-UWB peer-to-peer communications,” in IEEE Int’l Conference
on Ultra-Wideband (ICUWB 2011). IEEE, 2011, pp. 575–579.

[10] M Des Noes and B Denis, “Bene�ts from cooperation in si-
multaneous anchor-less tracking and room mapping based on
impulse radio-ultra wideband devices,” in 19th Int’l Conf. on
Systems, Signals and Image Processing (IWSSIP 2012). IEEE, 2012,
pp. 17–21.

[11] Wenyu Guo, Nick P Filer, and Rudolf Zetik, “Indoor mapping
and positioning using impulse radios,” in Proc. IEEE/ION Po-
sition Location and Navigation Symposium (PLANS), 2006, pp.
153–163.

[12] Viktoria Pammer and Klaus Witrisal, “Ultra wideband com-
munication system as sensor technology for 3D mapping,” in
IEEE 17th Int’l Symposium on Personal, Indoor and Mobile Radio
Communications. IEEE, 2006, pp. 1–5.

[13] Heinrich Luecken and Armin Wittneben, “UWB radar imaging
based multipath delay prediction for NLOS position estimation,”
in IEEE Int’l Conference on Ultra-Wideband (ICUWB 2011). IEEE,
2011, pp. 101–105.

[14] Fabio Antonacci, Jason Filos, Mark RP Thomas, Emanuël
Anco Peter Habets, Augusto Sarti, Patrick A Naylor, and Ste-
fano Tubaro, “Inference of room geometry from acoustic im-
pulse responses,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 20, no. 10, pp. 2683–2695, 2012.

[15] Ivan Dokmanić, Reza Parhizkar, Andreas Walther, Yue M Lu,
and Martin Vetterli, “Acoustic echoes reveal room shape,” Pro-
ceedings of the National Academy of Sciences, vol. 110, no. 30,
pp. 12186–12191, 2013.

[16] Richard O Duda and Peter E Hart, “Use of the Hough transfor-
mation to detect lines and curves in pictures,” Communications
of the ACM, vol. 15, no. 1, pp. 11–15, 1972.

2428


