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ABSTRACT

In this paper, we propose a new strategy to obtain super-
resolution maps of the sound field recorded by a spherical
microphone array. In recent works, we have demonstrated that
sparse recovery (SR) algorithms based on the minimisation
of the lp norm with 0<p≤ 1 can effectively produce super-
resolution acoustic maps. The issue with the minimisation of
the lp norm when p<1 is that it is a non-convex optimisation
problem, thus it is likely that the algorithm converges to a
local minimum. In this paper we show that we can improve
the convergence of our SR acoustic imaging methods by pro-
viding, to the SR solver, priming information relating to the
spatial location of the sound sources. This information can be
acquired with a pre-processing, coarse analysis using standard
blind source separation or direction-of-arrival techniques. Sim-
ulation results indicate that this approach can provide accurate
estimates of the positions of multiple, simultaneous sound
sources in the presence of noise or reverberation and even in
an under-determined situation.

Index Terms— Acoustic imaging, Sparse recovery, Spher-
ical microphone arrays

1. INTRODUCTION

Spherical microphone arrays (SMAs) have attracted consider-
able interest over the past decade. The main characteristic of
spherical microphone arrays is that they provide a panoramic
point of view on the sound field, which makes them partic-
ularly well suited for applications such as beamforming or
direction-of-arrival (DOA) estimation. Examples of recent
works in this field of research are the implementation of the
MUSIC and ESPRIT in the spherical harmonic domain, which
are referred to as EB-MUSIC [1] and EB-ESPRIT [2]. Spheri-
cal microphone arrays also provide an interesting framework
for blind source separation using independent component anal-
ysis (ICA) [3].

In a series of recent works [4, 5, 6, 7, 8], we have shown
that sparse recovery (SR) techniques can be used to analyse
the sound field acquired by SMAs at a resolution beyond that
associated with normal beamforming. Sparse recovery tech-

niques are based on the idea that the observed sound field
can be explained by only a few dominant sound sources. In
other words, the signals recorded by the SMA are decomposed
over a dictionary of sound sources and we assume that this
decomposition should be sparse across space. The most com-
mon approach for SR is the minimisation of the lp norm of
the decomposition, with 0 < p ≤ 1. Minimising the l1 norm,
which is the classic method employed in compressed sensing
applications, presents the advantage of being a convex optimi-
sation problem. Minimising the lp norm with p < 1, on the
other hand, does not constitute a convex optimisation problem,
which means that SR algorithms can then converge to a local
minimum. Nevertheless, multiple studies [9, 10] have shown
that minimising norms of this kind can be more effective than
minimising the l1 norm because they are closer to a direct
measure of sparsity (l0 norm). As well, convergence issues
due to the presence of local minima can be alleviated when
prior information is available [11, 12].

In a sound field analysis scenario, prior information regard-
ing the source positions is usually unavailable. However, it
is possible to perform a coarse spatial analysis of the sound
field and use these data to assist the convergence of the SR
sound field analysis. In this paper we investigate the use of
ICA and MUSIC to acquire coarse sound field energy maps
that are then used to prime an IRLS solver.

The remainder of the paper is organised as follows. Sec-
tion 2 briefly reviews sound field imaging using SR in the SMA
framework and then describes our approach to spatial prim-
ing. Section 3 presents the results of the numerical simulation.
Lastly, we conclude in Section 4.

2. METHODS

2.1. Acoustic imaging in the SMA framework

We begin by introducing the concept of acoustic imaging in the
SMA framework.The acoustic pressure, p(r, θ, φ), measured
on the surface of a spherical array (open or rigid) with spherical
coordinates (r, θ, φ) at the frequency f can be modelled as a
sum of L spherical harmonic modes [3, 13]:
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p(r, θ, φ) =

L∑
l=0

l∑
m=−l

ψl(kr)Y
m
l (θ, φ)blm(f) , (1)

where k is the wave number given by k = 2πf/c where c
denotes the speed of sound; Y m

l (θ, φ) denotes the value of the
order-l, degree-m real-valued spherical harmonic function for
direction (θ, φ); blm(f) is the spherical harmonic expansion
coefficient for order l and degreem; ψl(kr) for an open sphere
and a rigid sphere is given by

ψl(kr) =

i
ljl(kr) open sphere

il
(
jl(kr)− j′l(kr0)

h
(2)′
l (kr0)

h
(2)
l (kr)

)
rigid sphere

where i is the imaginary unit. jl and h(2)l denote the order-l
spherical Bessel function and spherical Hankel function of
the second kind, respectively. j′l , h

′
l are their derivatives, and

r0 ≤ r is the radius of the rigid sphere.
Equation (1) shows that a sound field can be represented

by a set of frequency-domain coefficients blm(f). The cor-
responding time-domain signals, blm(t), are referred to as
order-L Higher Order Ambisonic (HOA) signals. In order
to produce a map of the incoming sound field we perform a
plane-wave decomposition of the HOA signals by solving the
equation:

b(n, f) = D x(n, f) , where: (2)

• b(n, f) is the short-time Fourier transform (STFT) of
the vector of HOA signals with time index n and fre-
quency index f :

b(n, f) = [b00(n, f), b1−1(n, f), ..., bLL(n, f)]
T ,

• D is a matrix representing an arbitrarily chosen set of Q
plane-wave directions in the spherical harmonic domain:

D = [y1,y2, ...,yQ] ,

yi =
[
Y 0
0 (θi, φi), Y

−1
1 (θi, φi), ..., Y

L
L (θi, φi)

]T
,

where yi is a vector giving the spherical harmonic com-
ponents of a plane-wave for direction (θi, φi). We refer
to D as the dictionary matrix which we use to decom-
pose the sound field.

• x(n, f) is the STFT of the vector of Q plane-wave sig-
nals:

x(n, f) = [x1(n, f), x2(n, f), ..., xQ(n, f)]T .

Once the plane-wave signal decomposition has been obtained,
we can form an acoustic energy map which shows the incoming
acoustic energy for each direction in space by calculating
the energy, e(θi, φi), for each plane-wave direction in the
dictionary:

e(θi, φi) =

N∑
n=1

F∑
f=1

|xi(n, f)|2. (3)

Clearly, the resolution of the acoustic energy map depends on
the resolution of the plane-wave dictionary.

2.2. Sparse plane-wave decomposition

Our approach to the plane-wave decomposition consists
of looking for the sparsest plane-wave decomposition that
solves Eq. (2). This sparse plane-wave decomposition can be
determined by solving the following optimization problem:

minimise ‖x(n, f)‖p subject to b(n, f) = Dx(n, f) , (4)

where ‖ · ‖p denotes the lp norm of a vector, defined by:

‖x‖p =

(
Q∑
i=1

|xi|p
) 1

p

, (5)

and 0<p≤1. Problem (4) with p = 1 is the classic basis pur-
suit problem found in compressed sensing [11]. The advantage
of this formulation is that it is a convex problem, i.e., conver-
gence to a global minimum is guaranteed if an appropriate
solver is used. Choosing p < 1 may lead to faster convergence
and/or make it possible to recover signals with less measure-
ments compared to the p = 1 case [9, 11]. However, when
p < 1 Problem (4) is non-convex and convergence to a global
minimum is no longer guaranteed.

In the following we solve Problem (4) for p < 1 using
the iteratively reweighed least squares (IRLS) algorithm [9].
More specifically, the two following steps are repeated until
convergence:

1. Compute: x(n, f) = ΩDT
(
DΩDT + αI

)−1
b(n, f) ,

2. Compute: ωi =
(
|xi(n, f)|2 + µ

) 2−p
2 , (6)

where the weights ωi are initialised to 1, Ω is the diagonal
matrix with entries ωi, α is a regularization factor and µ is a
small-valued parameter ensuring that Ω is defined when one
of the xi is equal to 0 [14].

2.3. Sparse recovery with priming

In [11] and [12], the authors demonstrate that the accuracy
of sparse recovery can be improved when prior information
regarding the support of the solution is available. More specif-
ically, knowing which one or more element(s) of the solution
vector are non-zero makes it possible to better reconstruct the
signal vector with less observations. In the method presented
in [11], the weights ωi in the IRLS algorithm (Eq. (6)) cor-
responding to the a priori non-zero elements of the solution
vector are multiplied by a small constant. In this paper we
investigate the use of a similar priming method for sound field
imaging. In order to improve the convergence of the IRLS
algorithm in the context of sound field imaging, we replace
Problem (4) by the following optimisation problem:

minimise ‖x′(n, f)‖p subject to b(n, f) = DWx′(n, f) ,
(7)
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where W is a weighting matrix, W=diag ([w1, w2, . . . , wQ]),
wi = ē(θi, φi) where ē is a low-resolution energy map. The
weight wi expresses the likelihood or probability of finding an
active plane wave source in the corresponding direction: the
more likely the existence of the plane-wave source, the larger
is the corresponding weight. In the typical sound field imaging
scenario, no prior information regarding the positions of the
sources is available. In order to set the values of the priming
weights, wi, we first obtain a low-resolution acoustic energy
map of the sound field. The normalised energy values, ē,
corresponding to the low-resolution energy map are obtained
by dividing each energy value in the map by the maximum
energy value. Once the solution to Problem (7) is found, the
plane-wave solution is obtained as: x(n, f) = Wx′(n, f).

We now briefly describe two methods for calculating low-
resolution acoustic energy maps. For both methods, the HOA
signals are processed in the time domain. A sound field energy
map is calculated for each time frame and the energy maps
corresponding to each time frame are added together to obtain
the final low-resolution energy map.

2.3.1. Spatial priming using ICA

We briefly review the linear ICA technique described in [3]
for obtaining a low-resolution acoustic energy map. In the
first step, one applies linear ICA to the (L+ 1)2 time-domain
HOA signals in a given time frame, to obtain a set of (L+ 1)2

separated signals, sj(t), and a mixing matrix, A. In the sec-
ond step, the mixing matrix A is analysed to determine the
directions corresponding to each separated signal. For the
j-th signal, the estimated source direction is calculated as
(θ̂j , φ̂j) = (θq(j), φq(j)) where

q(j) = argmax
i

Cij with Cij =
yT
i aj

‖yi‖ ‖aj‖
, (8)

and aj denotes the j-th column of matrix A and Cij is the
correlation between vectors yi and aj . Because real sources
should show a large correlation with at least one direction in
space, source directions are only considered valid when the
maximum correlation value is greater than a given threshold,
e.g., 0.9. The ICA acoustic energy map is determined as

eICA(θi, φi) =

{ ∑
t sj(t)

2 i = q(j), Cij > 0.9
0 otherwise (9)

2.3.2. Spatial priming using MUSIC

Another possible method to obtain the priming weights is
to use the MUSIC algorithm. The MUSIC energy value for
direction i is given by:

eMUSIC(θi, φi) =
1

yT
i VΛVTyi

, (10)

where V is the matrix of the eigenvectors of the HOA signal
correlation matrix which are sorted in descending order based

on their corresponding eigenvalues, and Λ is the diagonal
matrix given by:

Λ = diag([λ1, λ2, ..., λ(L+1)2 ]) , λi =

{
0 for i ≤ K
1 otherwise

.

(11)

The MUSIC algorithm requires that the estimated number of
sources, K, be set beforehand. We experimentally set K = 3
as it provided reasonable results.

3. NUMERICAL SIMULATIONS

This section presents simulation results illustrating the pro-
posed approach. In our simulations, the sound field is mea-
sured using an SMA providing HOA signals up to order 2. The
SMA consists of two concentric spherical arrays of omnidirec-
tional microphones: 12 microphones are located on the surface
of a rigid sphere with a radius of 3 cm; another 12 microphones
are located on the surface of an open sphere with a radius of
15 cm. The dictionary D consists of 642 directions obtained
by successively subdividing the faces of an icosahedron. The
parameters used for the IRLS algorithm were set to p = 0.7
and α = 1

642
r

1−r tr(DΩDT) with r = 0.01. Lastly the ICA is
performed using the FastICA package for MATLAB [15].

3.1. Anechoic Simulation

We first consider an anechoic scenario. In this scenario, the
sound field recorded by the microphones originates from
twelve spherical sources located at a distance of 2 m. The
source directions relative to the SMA centre are indicated in
Figure 1. The signals emitted by the sources are speech signals,
approximately 3 s long. The presence of measurement noise in
the HOA signals is modelled by adding uncorrelated Gaussian
white noise (signal-to-noise ratio (SNR)= 20 dB). Note that
this scenario is an under-determined problem because there
are 12 sources and only 9 HOA signals.

Figure 1 shows the energy maps obtained with the follow-
ing methods: a) Sparse recovery; b) SR with MUSIC-based
spatial priming and c) SR with ICA-based spatial priming.
Clearly, the map obtained using SR alone highlights the gen-
eral location of the source positions, but does not allow to
locate the sources accurately. This is due to the presence of
measurement noise and to the large number of sources, which
make the sound field non sparse. Compared to the map ob-
tained with SR alone, the maps obtained using both spatial
priming methods are very accurate, showing energy peaks
almost only in the source directions. Note that the method
using MUSIC is slightly less precise than that based on ICA as
the spots corresponding to the sources are slightly larger and
there is one spurious spot located at approximately (0◦,75◦).
In Table1, the error in estimated angular position for different
SNR values is shown for SR-alone and SR with ICA-based
spatial priming algorithms. The SNR values are defined as the
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Fig. 1. This figure shows the acoustic energy maps for an anechoic room obtained by: a) SR alone; b) SR with spatial priming
using MUSIC; c) SR with spatial priming using ICA. The true source positions are indicated by the circles.

Fig. 2. This figure shows the acoustic energy maps for a reverberant room with T60=250 ms obtained by: a) SR alone; b) SR
with spatial priming using MUSIC; c) SR with spatial priming using ICA.

Table 1. This table shows the angular error for different SNR
values in the anechoic room (the target source position at
(0◦,170◦)).

SNR [dB] -16 -13 -10 -8 -5 -2 0

Angular error
[deg]

SR alone missed missed 12.8 12.4 12.6 9.5 3.9
SR with spatial
priming using

ICA
missed 2.1 2.1 2.1 2.1 2.1 2.1

ratio of target source power at position (0◦,170◦) to power of
all interferences (other sources and measurement noise). Note
that the value of 2.1 degrees (obtained using spatial priming)
corresponds to the angular distance between the target and the
closest dictionary direction.

3.2. Reverberant Simulation

We now consider a scenario whereby the SMA and the sources
are placed in a room with dimensions 14m×10m×3m. Five
spherical sources surround the SMA at a distance of 2 m. The
source directions relative to the SMA centre are indicated in
Figure 2. The impulse responses between the sources and
the microphones were calculated using the MCROOMSIM
software [16]. The T60 reverberation time of the room is
approximately 250 ms and the average signal-to-reverberant
ratio (SRR) is 3.7 dB. Similar to the anechoic scenario, the
source signals consist of speech and are approximately 3 s
long. Lastly, uncorrelated Gaussian white noise is added to
the microphone signals (SNR = 40 dB). In order to alleviate
the effect of reverberation, we separate the HOA signals into a

directive and a diffuse component using a technique described
in [8, 17]. The SR plane-wave decomposition is then applied
to the directive components.

Figure 2 shows the acoustic energy maps obtained using
the different techniques for the reverberant scenario. Similar
to the anechoic case, the method employing SR with no spa-
tial priming fails at localising the sources accurately. This is
due to the presence of reverberation, which was not totally
suppressed by the direct/diffuse separation. The map obtained
using MUSIC-based spatial priming is much more accurate,
the energy being distributed more precisely around the sources.
However, two spurious energy spots are present in this map.
Lastly, the map obtained using ICA-based spatial priming is
the most precise of the three. In this map only one plane-wave
direction is found to be active for each source, this direction
being very close to the true source direction.

4. CONCLUSION

In this paper we investigated the use of spatial priming for
sound field imaging using sparse-recovery methods. Spatial
priming consists in weighting the dictionary used for the SR
analysis with a diagonal weighting matrix based on the proba-
bility of the existence of a source in the given direction. Sim-
ulations results obtained for an anechoic and a reverberant
environment show that these techniques improve the accu-
racy of the acoustic imaging, especially in the presence of
reverberation.
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