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Abstract— The problem of recovering directions-of-arrival in
the sparse signal model with multiple snapshots is considered.
Based on the theory of super resolution, multiple snapshots are
used to jointly estimate directions-of-arrival in the continuous
domain. Instead of uniformly discretizing the search range,
interpolation preprocessing on the estimated super-resolution
directions is suggested leading to a sparse convex optimization
formulation. Moreover, a first order iterative algorithm is em-
ployed to reduce the computational time. A good selection of
regularization parameter is guaranteed via the modified general-
ized cross validation (GCV). Numerical results demonstrate the
performance of the proposed methods.

Index Terms— Directions of Arrival, Super Resolution, Spar-
sity, Multiple Measurement Vectors, Generalized Cross Valida-
tion

I. INTRODUCTION

A common goal of array signal processing for Directions-
of-arrival (DoA) estimation is to locate closely-spaced signals
in the presence of high-variance noise and low number of
snapshots. Two well-known examples of by now classical
high-resolution DoA estimators are the multiple signal classifi-
cation (MUSIC) [1], and the minimum variance distortionless
response (MVDR) [2] methods.

Compressed sensing and sparse representation of signals
have inspired sparse recovery algorithms for source localiza-
tion based on single observation vector [3]. Moreover, mul-
tiple measurement vectors (MMV) [4] with common sparsity
pattern are exploited to obtain solutions in sparse models. In
these algorithms, the search range of directions is discretized
into a grid in which the actual DoAs most likely will not
belong. This leads to the so-called off-grid effect, which
might cause their performance to be substantially degraded.
In [5], the off-grid error is linearized in a sparse spatial
spectral model and solved by an alternating Lasso approach
(the references in this paper provide several other approaches
for dealing with the off-grid error). In [6], [7], a mathematical
theory of super-resolution (SR) is proposed to potentially
estimate signals correctly in the continuous domain in which
the off-grid effect is neglected to avoid the degradation of
estimation in the discrete domain. The above problems can be
formulated as a least square function plus a penalty term with
a regulariztion parameter. However, regularization parameters
are hard to be chosen. There are several automatic ways to
select a good regulariztion parameter in the literature. For
example, the generalized cross validation (GCV) [8] is a
popular technique to select regularization parameters without

any prior information, such as the noise variance. In [9], an
automatic regularization parameter selector is proposed based
on the probabilistic recovery estimator with finite snapshots.

In this work, the super-resolution theory is applied to the
DoA estimation problem with multiple measurement vectors
(MMV). The multiple source signals with common sparsity
pattern of source locations is treated as a summation of
weighted superposition of spikes and any of two spikes have
to obey the minimum distance defined in [6]. Then, the joint
estimation of DoAs is obtained by reformulating the objective
function of the optimization problem in semidefinite program-
ming form. Instead of the descretized grid search, interpolation
preprocessing with the prior information of minimum distance
are utilized to add more likely candidates of directions into the
support set of DoA, and then a L1-norm minimization problem
is formulated in matrix form. Furthermore, a modified GCV
(MGCV) is proposed for MMV models. In order to reduce
the computational complexity of the approach, a fast first
order iterative algorithm is employed with an adaptive MGCV-
based regularization parameter selector. The peformance of the
proposed methods are compared by simulations with MUSIC
and Cramer-Rao Lower Bound (CRLB).

Notation: diag(x) represents a diagonal square matrix with
the diagonal vector x. (X)i,j = xi,j represents the entry of
matrix X at row i and column j. The L1-norm of a matrix X is
defined as ∥X∥1 =

∑
i

∑
j |xi,j |. ∥X∥F means the Frobenius

norm. σmax(X) is the maximum singular value of matrix
X. trace(X) takes the sum of diagonal entries of matrix X.
Denote |T | as the cardinality of the set T . sgn(x) takes the
sign of any real number x. |x| takes the absolute value of any
real number x. R+ denotes the set of positive real numbers.

II. PROBLEM FORMULATION

Consider an array of M sensors and suppose that there
are K far-field narrowband sources impinging on the ar-
ray from angles θ1, . . . , θK . The observation vector y(t) =
[y1(t), . . . , yM (t)]T ∈ CM×1 at time t is modeled as

y(t) = Gx(t) + n(t), t = 1 . . . , T, (1)

where the measurement matrix G = [g(θ1), · · · ,g(θL)] ∈
CM×L is composed of the steering vectors {g(θi) =
[e−j(−(M−1)/2)2π d

λ sinθi , . . . , e−j((M−1)/2)2π d
λ sinθi ]T }Li=1

with wavelength λ, and n is i.i.d. white Gaussian noise with
N (0, σ2I). The vector x(t) = [x1(t), . . . , xK(t)]T ∈ RK×1

+

represents the arriving stochastic signal vector with covariance
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matrix Cs. Denote Tθ = {sin(θk)}Kk=1 ⊂ T = [−1, 1] as
the support set for the sines of the angles of arrival. If
T > 1 multiple snapshots are considered, we can define the
following MMV system as

Y = GX+N, (2)

where the obervation matrix Y = [y(1), . . . ,y(T )] ∈ CM×T ,
the source signal matrix X = [x(1), . . . ,x(T )] ∈ RK×T

+ ,
and the noise matrix N = [n(1), . . . ,n(T )] ∈ RM×T . Since
multiple snapshots of vectors in X share the common sparsity
pattern of the support set in the domain T, this property can
be exploited to jointly estimate the support set Tθ.

By applying the super resolution mathematical theory of [6]
to the MMV system, we model the continuous domain signal
s(τ) as

s(τ) =

T∑
t=1

K∑
k=1

xk,tδτk , (3)

where τk ∈ T = [−1, 1] and xk,t ∈ C or R, ∀k, t. δτk is a
Dirac delta function at time τk. It is noted that xk,t equals
to the entry xk(t) of the matrix X. The Fourier transform of
s(τ) is expressed as

z(n) =

∫ 1

−1

e−j2πnts(dτ) =
T∑

t=1

K∑
k=1

xk,te
−j2πnτk (4)

=

T∑
t=1

rt(n), n = −fc, . . . , fc,

where rt(n) =
∑K

k=1 xk,te
−j2πnτk . Thus, the Gaussian noise

model can be rewritten in the compact form:

z = Fs+ e, (5)

where z = [z(−fc), . . . , z(fc)]
T ∈ CM×1. By letting τk =

sin(θk), ∀k and fc =
d
λ (M − 1)/2, it is easy to show that

z = Fs+ e = G(
T∑

t=1

x(t)) +
T∑

t=1

n(t) =
T∑

t=1

y(t). (6)

In this case of MMV, we desire to estimate the data xk,t,
and directions τk, ∀k, t. The minimum distance between two
directions is defined as [10]

∆(θ) = min
∀θi ̸=θj

|sin(θi)− sin(θj)|. (7)

If ∆(θ) ≥ 2
fc

= 4λ
(M−1)d , then there exists a unique solution

for the total variation minimization problem [7]:

min
s

∥s∥TV s.t. ∥Fs− z∥2 ≤ δ, (8)

where ∥s∥TV is equal to ∥X∥1 =
∑

t

∑
k |xk,t|. Similarly

in [7], the dual problem in semidefinite programming (SDP)
form is derived as

max
u,Q

Re(
T∑

t=1

< y(t),u >)− δ∥u∥2 (9)

s.t.
[
Q u
u 1

]
≽ 1,

M−j∑
i=1

Qi,i+j =

{
1, j = 0,

0, j = 1, 2, . . . ,M − 1
,

where Q ∈ CM×M is a Hermitian matrix. According to
Lemma 3.1 in [7] and by using the root finding procedure,
the estimated support set T est

θ = {sin(θestk )}Kk=1. is obtained,
and then the measurement matrix Gest is reconstructed.

III. APPROACH

In this section, methods are proposed to estimate the signal
xk,t, ∀k, t with its corresponding direction. First, an interpo-
lation preprocessing on the estimated support set T est

θ is per-
formed, and Lasso-type optimization problems are presented.
Subsequently, reduced-complexity approaches are developed
with an adaptive regularization parameter selector based on
the generalized cross validation.

A. Interpolation Preprocessing and Lasso-Type Solvers

Because of the numerical issues of the root finding pro-
cedure, the cardinality of T est

θ is usually greater than the
cardinality of Tθ, but it might be less when SNR is low or
minimum distance is not obeyed. In order to overcome this
situation, the minimum distance ∆(θ) is utilized to increase
the likely candidates into the estimated support set T est

θ . In
other words, we discretize the domain T in terms of the prior
information ∆(θ) and the estimated support set T est

θ . Given
a positive constant µ < 1 and initializing the augmented
support set T̃ est

θ = T est
θ , we repeat the following steps for

each element τesti in T̃ est
θ sequentially until each element is

checked:
1) When i = 1 ∼ (|T̃ est

θ | − 1): check

T̃ est
θ = T̃ est

θ

∪
{τesti +∆(θ)}, if τesti + µ∆(θ) ≤ τesti+1

2) When i = 1: check

T̃ est
θ = T̃ est

θ

∪
{τesti −∆(θ)}, if τesti −∆(θ) ≥ −1

3) When i = |T̃ est
θ |: check

T̃ est
θ = T̃ est

θ

∪
{τ esti +∆(θ)}, if τesti +∆(θ) ≤ 1

Thus, the cardinality of T̃ est
θ must be greater than the cadi-

nality of Tθ, in which leads to a sparse signal reconstruction
problem. By using the paramter µ in case 1, ambiguity of
candidates in the augmented support set can be avoided, and
the augmented mearsurement matrix G̃est can be obtained in
terms of T̃ est

θ . Then, two Lasso-type solvers are proposed.
After interpolation preprocessing, we can formulate the

following convex optimization problem

X̃ = argmin
X

1

2
||Y − G̃estX||2F + β||X||1. (10)

Furthermore, since each column vector of X has the same
sparsity pattern, another form of convex optimization problem
by the notion of Group Lasso [11] can be formulated as

X̃ = argmin
X

1

2
||Y − G̃estX||2F + γ||X||2,1, (11)

where ||X||2,1 =
∑K

k=1 ∥Xk,:∥2, and Xk,: denotes the kth

row of X.
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According to X̃, the most likely directions of signals is de-
termined from the augmented support set T̃ est

θ . It is noted that
the regularization parameters, β and γ, are tuned empirically
to attain the best performance.

B. Complexity-Reduction Methods

The computational complexity of solving formulation (10)
or (11) might become significantly high when the dimension
of matrix X increases. In order to reduce the computing
time, iterative shrinkage-thresholding algorithm (ISTA)
[12] is applied when only the optimization problem (10) is
considered. Let f(X) = 1

2 ||Y − G̃estX||2F . By using the
quadratic approximation of f(X) at a given matrix Xr:

f(X) ∼=f(Xr) + trace[(
∂f(Xr)

∂X
)H(X−Xr)] (12)

+
L

2
∥X−Xr∥2F ,

where ∂f(Xr)
∂X = −G̃H

estY + G̃H
estG̃estX

r and L =

σmax(G̃
H
estG̃est). Then, (10) is equivalent to

Xr+1 = argmin
X

1

2
||X− (Xr − 1

L
A)||2F +

β

L
||X||1, (13)

where A = ∂f(Xr)
∂X . The closed form solution of the above

problem is ∀k, t,

(Xr+1)k,t = sgn[(Xr − 1

L
A)k,t]max(|(Xr − 1

L
A)k,t| −

β

L
, 0).

(14)

In [13], another iterative shrinkage method, called fast
iterative shrinkage-thresholding algorithm (FISTA), is
proved to have faster convergence than ISTA. A key func-
tion employed in FISTA is proximal operator [14]. Let h :
RK×T → R ∪ {∞}. The proximal operator of h is denoted
by

proxh(V) = argmin
X

(h(X) +
1

2
∥X−V∥2F ), (15)

which is the generalization of (13). If h(X) = β||X||1, the
proximal operator is

(proxh(V))k,t = sgn[(V)k,t]max(|(Vk,t)| − β, 0), ∀k, t,
(16)

which is similar to (14). For our problem (10), a FISTA-based
algorithm can be similarly to the approach of [13], except
the main iterative step is replaced by the matrix form Xr =
prox 1

Lh(Z
r − 1

L
∂f(Zr)

∂Z ), where Zr is a dummy matrix.

C. Modified Generalized Cross Validation (MGCV)

Although the convergence of FISTA is fast, a proper regu-
larization parameter must be selected. The generalized cross
validation [15] is a popular method and was proposed in a
Lasso model to select a good parameter β by minimizing the
function

GCV (β) =
1

M

∥(y −B(β)y)∥22
(1− p(β)/M)2

, (17)

where B(β) = H(HHH + βW−)−1HH and p(β) =
trace(B(β)). W− is a generalized inverse of matrix W,
where W = diag({|x̃i|}Ki=1) in which x̃i is the entry of the
solution x̃ = (HHH+βW−)−1HHy in the ridge regression
form. More details can be found in [15].

For our problem formulation (10), a modified GCV
(MGCV) is suggested as

MGCV (β) =
1

M

∥(Y −C(β)Y)∥2F
(1− p(β)/M)2

, (18)

where C(β) = G̃est(G̃
T
estG̃est + βW̃−)−1G̃H

est, p(β) =
trace(C(β)), and W̃− = 1

T

∑T
t=1 W̃

−
t , where W̃−

t is a
generalized inverse of W̃t = diag({|x̃k,t|}Kk=1). It is noted
that x̃k,t of X̃ can be obtained by solving (10) or (11) via CVX
tools, or x̃r

k,t of Xr is computed for W̃t = diag({|x̃r
k,t|}Kk=1)

when performing the FISTA-based algorithm for (10).
We suggest combining FISTA with MGCV. After the func-

tion of MGCV is updated based on the matrix update of W̃−

in FISTA, the best estimate of β can be selected adaptively
by minimizing the function of MGCV at each iteration. The
FISTA-MGCV algorithm for (10) is summarized as follows:

FISTA-MGCV Algorithm:

Input: Initialize X0 = 0, β0 = 0, and the Lipschitz
constant of ∂f(Xr)

∂X is L = σmax(G̃
H
estG̃est)

Step 0:Take Z1 = X0, t1 = 1, β1 = β0

Step r:(r ≥ 1) Compute

Xr = prox 1
Lh(Z

r − 1

L

∂f(Zr)

∂Z
) (19)

Update W̃−in terms of Xr (20)
βr+1 = argmin

β
MGCV (β) (21)

tr+1 =
1 +

√
1 + 4t2r
2

(22)

Zr+1 = Xr +
tr − 1

tr+1
(Xr −Xr−1) (23)

Until some stopping criteria is satisfied.

Note that the proximal operator in the algorithm is
prox 1

Lh(V
r) = sign[Vr] max(|Vr| − βr

L , 0) for the input
matrix Vr.

IV. NUMERICAL RESULTS

In these simulations, the proposed joint super-resolution
DoA estimation by FISTA-MGCV (JSR-FISTA-MGCV) is
compared with MUSIC and CRLB. In a MMV system with
the super-resolution view, the minimum distance ∆(θ) is set
to 0.1 so that M = 81 sensors is needed. The large number
of sensors is used for illustration to effect the arbitrarily-
selected 0.1 minimum separation required by super-resolution
theory. At time t, there are K = 2 positive-valued uncorre-
lated Gaussian source signals which are located at sin(θ) =
[sin(θ1), sin(θ2)], where two entries are randomly generated
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Fig. 1. RMSE of DoA estimation versus Number of snapshots of the proposed
methods and MUSIC.

and their difference of distance = 0.11. Assume that the
number of sources is known. d is set a half of the signal
wavelength. For MUSIC, the step-size of uniform search grid
is 0.001 in the domain [−1, 1]. Least-squares (LS) is used to
estimate the amplitude of signals after signal directions are
detected by MUSIC. The noise level δ is choosen manually.
The parameter µ is set 0.1. One hundred realizations are
performed at each SNR.

First, we verify that the performance of joint DoA estima-
tion by the super-resolution theory. In Figure 1, the RMSE
of DoA estimation of the proposed method and MUSIC are
presented at SNR=-25 dB. The result shows that the proposed
method achieves better estimation accuracy than MUSIC no
matters how many snapshots are used. Furthermore, both of
the performance become better when the number of snapshots
T increases, but JSR-FISTA-MGCV converges faster than
MUSIC by fewer number of snapshots.

In Figure 2, we present the RMSE of DoA estimation of
JSR-FISTA-MGCV, CRLB and MUSIC. The number of snap-
shots T is set 3000. The estimation accuracy of JSR-FISTA-
MGCV outperforms MUSIC at each SNR, except SNR= −25
dB at which they are close to each other. Compared with MU-
SIC, the performance of JSR-FISTA-MGCV is much closer to
CRLB even at low SNR. In Figure 3, the normalized RMSE
of signal amplitude estimation of JSR-FISTA-MGCV and
MUSIC are presented. The performance of signal amplitude
estimation partially depends on the accuracy of reconstructing
the measurement matrix G in terms of the augmented support
set. MUSIC with LS have poor performance due to the
erroneous reconstructed measurement matrix and the noise
effect which is amplified by the LS method. The JSR-FISTA-
MGCV achieves better performance than MUSIC.

V. CONCLUSION

Based on the extension of the super-resolution theory to
the MMV model, a joint DoA estimation problem is solved
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Fig. 2. RMSE of DoA estimation versus SNR performance of the proposed
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Fig. 3. RMSE of Amplitude estimation versus SNR performance of the
proposed methods and MUSIC.

via SDP. Using the estimated DoA and interpolation prepro-
cessing, an augmented support set is generated to reconstruct
the measurement matrix, leading to the formulation of a
sparse convex problem to accurately estimate the direction
and amplitude of source signals. To speed up the computing
time, an iterative algorithm based on FISTA is proposed with
an adaptive regularization parameter selector by minimizing
the proposed modified GCV. Simulation results provide an
indication of the performance of the proposed techniques
relative to CRLB and MUSIC.
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