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Abstract—In this paper, we utilize Bayesian Compressive Sens-
ing (BCS) for direction-of-arrival (DOA) estimation based on the
coarray. This enables estimation of more sources than the number
of physical antennas. We adopt the covariance vectorization
technique to construct the received signal vectors of coarrays for
both fully and partially augmentable arrays. We then apply the
single measurement vector BCS (SMV-BCS) for DOA estimation.
Supporting simulation results for both sparse linear arrays and
circular arrays demonstrate the effectiveness of the proposed
approach in terms of high resolution and estimation accuracy
compared to the MUSIC and sparse signal reconstruction based
methods.

Index Terms—Bayesian compressive sensing, coarray, covari-
ance vectorization, DOA estimation, single vector measurement

I. INTRODUCTION

Estimating the direction-of-arrival (DOA) using antenna
arrays has been an important topic in signal processing with
diverse applications, such as radar, satellite navigation and
telecommunication to list a few [1]. There has been exten-
sive research on high-resolution DOA estimation techniques,
among which the ones evolving around Capon’s methods and
MUSIC algorithms are commonly used [2]. Another kind of
effective DOA estimation techniques based on sparse signal
reconstruction (SSR) has emerged in recent years, includ-
ing the l1-SVD method proposed in [3]. In the case of a
single measurement vector (SMV), l1 optimization approach
is considered attractive to sparse signal recovery due to its
guaranteed recovery accuracy. A major issue encountered in
l1 optimization, however, is that reliable recovery is guaranteed
only when the restricted isometry property is satisfied [4]. It
is worth noting that, for all aforementioned DOA estimation
methods, the number of estimated sources cannot exceed the
number of physical antennas.

When the number of estimated sources is larger than the
number of physical sensors, high-resolution DOA estimation
can be accomplished based on two approaches, neither requires
increasing the number of physical antennas: (1) Different
spatial lags of the covariance matrix of the sparse array
are used to form an augmented Toeplitz matrix, which is
equivalent to the true covariance matrix of an equivalent
filled uniform array [5]–[7]; (2) The covariance matrix of
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the sparse array is vectorized to emulate observations at the
corresponding difference coarray [8]–[10], which is defined as
the set of points at which the spatial covariance function can
be sampled with the physical array [11], [12]. The former
technique requires positive definite Toeplitz completion for
partially augmentable arrays [13], which is difficult to imple-
ment, especially when there are multiple holes corresponding
to missing autocorrelation lags in the coarray points. In the
second approach, the sources are replaced by their powers,
casting them as mutually coherent. Spatial smoothing must
then be applied to decorrelate signals and restore the full rank
of the resulting covariance matrix before high-resolution DOA
estimation can be performed [8], [14]. Spatial smoothing,
however, requires availability of a set of contiguous coarray
points without any holes which limits its applicability to
partially augmentable arrays.

In order to better utilize the coarray aperture and increase
the number of degrees of freedom without the requirement of
contiguous spatial lags, an SSR method for DOA estimation
has been adopted based on the second approach of covariance
matrix vectorization [15], [16]. There are inevitably spurious
peaks in the sensing spectrum for SSR based methods due
to the coherency of ill-conditioned measurement dictionary.
Thus, a more reliable estimation approach is required, es-
pecially for partially augmentable arrays. To this end, we
utilize the Bayesian Compressive Sensing (BCS) [17] which
formulates the problem from a probabilistic perspective and
solve it with the relevance vector machine (RVM) concept
[18]. The sparse solution is obtained by assuming a Laplace
prior for the sources of interest. It has been shown that the
BCS-based spectrum sensing method is an effective and robust
DOA estimation technique [19]–[21].

A SMV-BCS method based on the covariance vectoriza-
tion technique is adopted in this paper for both fully and
partially augmentable arrays. An attractive approach is to
combine multiple measurement vector BCS (MMV-BCS) with
the eigenvalue decomposition of the augmented covariance
matrix. However, the MMV-BCS is more sensitive to the
coherency of the measurement dictionary. Although awaiting
further analysis, simulations have shown that the MMV-BCS
based on covariance augmentation does not perform as well
as the SMV-BCS based on covariance vectorization for fully
augmentable arrays especially for sources close to the end-fire.
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The remainder of this paper is organized as follows. DOA
estimation based on the difference coarray is formulated in
Section II. The SMV-BCS algorithm is introduced in Section
III. Section IV provides the supporting simulation results,
while Section V contains the concluding remarks.

II. DOA ESTIMATION BASED ON DIFFERENCE COARRAY

Assuming the positions of the array elements form the set,

S = {(xi, yi), i = 1, · · · ,M}, (1)

where xi = nid0, yi = mid0 with d0 being the unit inter-
element spacing and ni,mi being integer numbers. The cor-
responding difference coarray has positions,

Sd = {(xi − xj , yi − yj), i, j = 1, · · · ,M}, (2)

i.e., the difference coarray is the set of pairwise differences of
the array element positions and the received signal correlation
can be calculated at all lags comprising the difference coarray
[12]. Minimum Redundancy Arrays (MRAs) and Minimum
Hole Arrays (MHAs) are the common classes of sparse arrays
[11], [22]. MRAs are those configurations of M elements that
satisfy minimum (R | H = 0; M = constant), where R and H
denote the number of redundancies and holes in the coarray,
respectively. MRAs are also referred to as fully augmentable
arrays in [23]. MHAs are sparse arrays of M elements that
satisfy minimum (H | R = 0; M = constant), which belong to
the class of partially augmentable arrays.

Consider K narrowband far-field uncorrelated sources
sk(t), k = 1, · · · ,K, impinging on an array of M omnidirec-
tional sensors from directions θk, k = 1, · · · ,K in elevation
and φk, k = 1, · · · ,K in azimuth. The array output can be
expressed as,

y(t) = As(t) + e(t), t = 1, · · · , T̃ , (3)

where y(t) = [y1(t), · · · , yM (t)]T , s(t) = [s1(t), · · · , sK(t)]T

and e(t) = [e1(t), · · · , eM (t)]T is the noise vector. The matrix
A = [a(u1), · · · , a(uK)] is the array manifold and a(uk) is the
steering vector of the kth source, which is defined as,

a(uk) = [1, ejk0(u
x
2x2+u

y
2y2), · · · , ejk0(u

x
MxM+uy

MyM )]T , (4)

where k0 = 2π/λ is the wavenumber and uk = [uxk, u
y
k]T =

[cos θk cosφk, cos θk sinφk]T .
The correlation matrix R of the received signal is given by,

R =

T̃∑
t=1

y(t)yH(t) = ARsAH + σ2
0I, (5)

where Rs represents the source correlation matrix, which
is diagonal with the source powers σ2

1 , · · · , σ2
K populating

its main diagonal, I is the identity matrix of corresponding
rank, σ2

0 is the noise variance and the superscript ’H’ denotes
conjugate transpose. The ijth element of R is,

(R)ij =

K∑
k=1

σ2
ke
jk0(u

x
k(xi−xj)+u

y
k(yi−yj)) + σ2

0δ(i− j), (6)

where δ(i − j) is the Kronecker Delta function. It is clear
that (R)ij can be treated as the data received by the coarray
element position (xi − xj , yi − yj).

III. SMV-BCS BASED ON COVARIANCE VECTORIZATION

We elaborate on the SMV-BCS method based on covariance
vectorization for DOA estimation in the case where the sources
are more than the physical antennas.

A. Covariance Vectorization

Vectorizing R, we obtain

ỹ = vec(R) = Ãb + σ2
0 ĩ, (7)

where Ã = [ã(u1), · · · , ã(uK)] with ã(uk) = a(uk)⊗ a∗(uk).
Here ⊗ denotes the Kronecker product and ’∗’ is the conjugate
operation. The two vectors ĩ = vec(I) and b = [σ2

1 , · · · , σ2
K ]T .

The vector ỹ can be viewed as a single snapshot received by
a much larger virtual array, whose element positions are given
by the difference coarray. Utilizing the coarray measurement
vector ỹ for DOA estimation permits handling of a greater
number of sources than the number of physical antennas.
The equivalent source signal b consists of the powers of
the estimated sources and the noise becomes a deterministic
vector. Therefore, the rank of the covariance matrix of ỹ is
one and subspace-based DOA estimation techniques, such as
MUSIC, would fail. It should be noted that if the sparse array
is fully augmentable, spatial smoothing can be utilized to
restore the rank of the covariance matrix.

B. SMV-BCS

Let θ̂ = {θ̂1, · · · , θ̂Ne
} and φ̂ = {φ̂1, · · · , φ̂Na

} be two
fixed sampling grid sets covering all possible DOAs, where
Ne and Na are the number of grid points in elevation and
azimuth, respectively. Let Φ̃ = [ã(û1), · · · , ã(ûNeNa), ĩ]. The
observation model in Eq. (7) can be rewritten as,

ỹ = Φ̃x + e, (8)

where x represents the source signals, with the entry cor-
responding to the angles [θk, φk] equals σ2

k if θk ∈
{θ̂1, · · · , θ̂Ne

} and φk ∈ {φ̂1, · · · , φ̂Na
}, k = 1, · · · ,K. The

signal x is sparse since NeNa � K. Here, e denotes the
estimation noise which, without loss of generality, is circu-
larly symmetric Gaussian distributed with probability density
function,

p(e|α0) = CN (e|0, α−10 I). (9)

The complex Normal distribution CN (u|µ,Σ) is defined as,

CN (u|µ,Σ) =
1

πNeNa |Σ|
exp{−(u−µ)HΣ−1(u−µ)}. (10)

Therefore, we have

p(ỹ|x, α0) = CN (ỹ|Φ̃x, α−10 I). (11)

A two-stage hierarchical prior is adopted for x to introduce a
Laplace prior for both real part R(x) and imaginary part I(x).
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First, we define a zero mean complex Gaussian prior,

p(x|α) = CN (x|0,Λ), (12)

with Λ = diag(α) and α = [α1, · · · , αNeNa
]T ∈ RNeNa

+ .
Further, a Gamma hyperprior is considered over α,

p(α|ρ) = ΠNeNa
n=1 Γ(αn|1, ρ), (13)

with ρ ∈ R+ being fixed a priori. Similarly, a Gamma prior
is introduced on α0,

p(α0|c, d) = Γ(α0, c, d) = αc−10 e−α0/dd−cΓ(c)−1, (14)

with c, d ∈ R+ being fixed a priori and Γ(c) being the
Gamma function evaluated at c. To make the Gamma prior
non-informative, c, d→ 0 are adopted [19].

By combining the stages of the hierarchical model, the joint
distribution is obtained as

p(x, ỹ, α0, α) = p(ỹ|x, α0)p(x|α)p(α0)p(α). (15)

A type-II ML approach is exploited to perform the Bayesian
inference since the posterior distribution p(x, α0, α|ỹ) cannot
be expressed explicitly. First, it is easy to show that the
posterior for x is a complex Gaussian distribution, [19]

p(x|y, α0, α) =
p(y|x, α0)p(x|α)

p(y|α0, α)
= CN (x|µ,Σ), (16)

with mean and covariance,

µ = α0ΣΦ̃H ỹ, Σ = (Λ−1 + α0Φ̃HΦ̃)−1. (17)

Then, the hyperparameters α0 and α are estimated by the max-
ima of the posterior p(α0, α|ỹ), or equivalently, the maxima
of the joint distribution p(ỹ, α0, α) ∝ p(α0, α|ỹ), which can
be expressed as

p(ỹ, α0, α) = p(ỹ|α0, α)p(α0)p(α). (18)

We can readily show that p(ỹ|α0, α) is the convolution of two
Gaussian distributions, i.e.,

p(ỹ|α0, α) =

∫
p(ỹ|x, α0)p(x|α)dx = CN (ỹ|0,C), (19)

with
C = α−10 I + Φ̃ΛΦ̃H . (20)

To alleviate the computational complexity of Eq.(17), we use
the Woodbury matrix identity to obtain

Σ = Λ− ΛΦ̃HC−1Φ̃Λ. (21)

The Maximum Likelihood (ML) function is the logarithm of
the joint PDF, L(α0, α) = logp(ỹ, α0, α). An expectation
maximization (EM) algorithm is implemented to maximize the
ML function. Hence, the update of αn is given as

αnew
n =

√
1 + 4ρ(|µn|2 + Σnn)− 1

2ρ
, (22)

where µn and Σnn denote the nth entry of the mean vector
µ and the diagonal of the covariance matrix Σ respectively.

TABLE I: DOA estimation MSE of MUSIC, SSR and BCS
for both MRA and MHA.

Arrays MUSIC(◦) SSR(◦) SMV-BCS(◦)
MRA 2.35 1.07 0.012
MHA - 4.78 0.035
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Fig. 1: Sensing spectra of three DOA estimation algorithms
for fully augmentable arrays.

Similarly, for α0 we have

αnew
0 =

Ma + c− 1

‖ỹ− Φ̃µ‖22 + α−10

∑NeNa

n=1 γn + d
, (23)

with γn = 1−α−1n Σnn and c, d are defined in Eq.(14). Here,
Ma is the number of virtual antennas in the coarray. Most
entries of µ and Σ converge to very small values, which im-
plies that the posterior for these xn becomes strongly peaked
at zero. As a result, these xn are zeros and, hence, sparsity
is realized. The source power in the direction [θ̂n1

, φ̂n2
] with

n = Na ∗ (n1 − 1) + n2 is estimated by σ2
n = |µ(n)|.

IV. SIMULATION RESULTS

A. Sparse Linear Array

We use two sparse linear arrays with 10 antennas with
configurations [0, 1, 3, 6, 13, 20, 27, 31, 35, 36]λ/2 for MRA
and [0, 1, 6, 10, 23, 26, 34, 41, 53, 55]λ/2 for MHA respec-
tively [11], [24]. We set the BCS parameters as ρ = c = d =
1e−4 and initialize α0 = 100/Var(ỹ), α = |Φ̃H ỹ|. The number
of time snapshots is 2000 for covariance matrix estimation.
The performance comparison of the different techniques re-
ported in this section also holds when using higher and lower
number of snapshots. The MRA is fully augmentable with
the coarray being a 73-antenna uniform linear array (ULA).
Therefore, in addition to the SSR and SMV-BCS, the MUSIC
equipped with spatial smoothing can also be utilized for DOA
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Fig. 2: Sensing spectra of two DOA estimation algorithms for
partially augmentable arrays.

estimation. Consider 31 sources uniformly distributed within
the range [30◦, 150◦] with an angular interval 4◦ and signal-
to-noise ratio (SNR) 20dB. The sensing spectra of the three
methods are shown in Fig. 1. We can observe that there are
spurious and biased peaks in the spectrum of the SSR method.
Some spectral lines are too weak to identify for the MUSIC
pseudo-spectrum. The SMV-BCS based on the covariance
vectorization exhibits the best performance, and clearly shows
31 peaks with almost the same power level.

In order to examine the estimation accuracy, we utilize the
mean squared error (MSE) as the metric defined as,

MSE =
1

K

K∑
k=1

(θk − θ̃k)2, (24)

where θ̃k denotes the estimated angle of the kth source. The
MSE values of the three considered methods, MUSIC, the SSR
and the SMV-BCS, are listed in the first row of Table I with
200 Monte-Carlo runs. It is evident that the MUSIC approach
exhibits the worst estimation performance, whereas the pro-
posed SMV-BCS approach based on covariance vectorization
demonstrates much higher estimation accuracy than the other
two methods.

The coarray for the 10-antenna MHA is a 91-antenna linear
array with 10 holes, thus only the SSR and the SMV-BCS can
be used for DOA estimation. Consider 41 sources uniformly
distributed within the range [30◦, 150◦] with an angular inter-
val 3◦ and 20dB SNR. The sensed spectra of the two methods
are shown in Fig. 2. Again, the proposed method is superior to
the SSR and enjoys high resolution DOA estimation for this
case of closely spaced sources. Similar to the MRA, we also
utilize 200 Monte-Carlo runs to calculate the estimation MSE,
which is provided in the second row of Table I. It is clear
that the proposed method presents high estimation accuracy
for partially augmentable arrays as well. Note that we do not
present the DOA estimation performance based on the physical
array with its limited degrees of freedom, as it cannot deal with
more sources than the number of antennas.
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Fig. 3: The 8-antenna circular array and its difference coarray.
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Fig. 4: 2-D DOA estimation: the square and circle indicate the
true and estimated directions respectively.

B. Circular Arrays

A circular array with a single antenna in the center and
7 antennas uniformly distributed along the circumference, as
indicated by filled dots in Fig. 3, is typically employed in GPS.
The corresponding coarray is a four-circle concentric array,
also shown in Fig. 3. Suppose there are 10 jammers arriving
from [10◦, 20◦, 30◦, 10◦, 20◦, 30◦, 10◦, 20◦, 30◦, 38◦] in eleva-
tion and uniformly distributed in azimuth sector [30◦, 300◦]
with an angular interval 30◦ and 20dB interference to noise
ratio. The two-dimensional (2-D) DOA estimation in both
elevation and azimuth is shown in Fig. 4, where the radial
direction denotes the elevation angle and the circumference
direction is the azimuth. We can observe that the estimated 2-
D angles coincide with the true angles which further validates
the effectiveness of the proposed approach.

V. CONCLUSION

In this paper, we utilized a probabilistic Bayesian inference
method for DOA estimation based on the difference coarray.
This allows DOA estimation of more sources than the sensors.
We combined the SMV-BCS approach with covariance vector-
ization for both fully and partially augmentable arrays. Simu-
lation results showed that the proposed method can overcome
the shortcomings of the SSR method and the MUSIC, such
as spurious peaks and inaccurate power estimation. However,
this performance superiority has to be weighted against slow
convergence of BCS for high dimension dictionary matrix.
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