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ABSTRACT
Coprime sensor arrays (CSAs) achieve the resolution of a
fully populated uniform linear array (ULA) with the same
aperture using fewer sensors. The conventional CSA prod-
uct beamformer suffers from a smaller array gain due to the
reduced number of sensors. This paper derives that the condi-
tional PDFs for detecting Gaussian signals in spatially white
Gaussian noise with the CSA product processor are products
of Bessel functions. The resulting ROCs are compared with
those of the ULA energy detector for a conventional beam-
former. The Bessel function CSA detection PDFs asymptot-
ically converge to exponential distributions like the ULA de-
tection PDFs, revealing that the detection gain of the nonlin-
ear CSA processor is still proportional to the number of sen-
sors. Monte Carlo simulations confirm the validity of the an-
alytic results and the asymptotic approximations to the PDFs.

Index Terms— Coprime sensor array, ROC, signal de-
tection

1. INTRODUCTION

An array of sensors spatially samples propagating signals. A
beamformer coherently combines the observed signal and in-
coherently averages the noise, increasing signal to noise ratio
(SNR) at the output of the beamformer [1, 2]. The improve-
ment in SNR due to the use of the beamformer is called ar-
ray gain AG and is defined as AG = SNRO/SNRI , where
SNRO and SNRI are the output SNR and the input SNR
of the array, respectively [1]. The white noise array gain for
an array is ||w||−2, where w is the weight vector normalized
such that the signal arriving from the look direction passes
undistorted [1]. For a uniformly excited linear array, the white
noise array gain is equal to the number of sensors in the array.
Since a CSA has fewer sensors than its equivalent full ULA,
a CSA processor has less ability to average white noise and
hence is expected to have less array gain. This paper exam-
ines the detection performance of a CSA processor with the
equivalent aperture full ULA when the arrays are operating in
Gaussian signal and white Gaussian noise.
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Section 2 explains CSA processing. Section 3 discusses
the signal model and establishes the test statistics and their
PDFs for the CSA and the full ULA. Section 4 plots and com-
pares the region of convergence plots of the CSA and the full
ULA and shows that the detection gain of the CSA processor
is proportional to the number of sensors.

Conventions: Boldface lowercase math symbols denote
vectors and boldface uppercase math symbols denote matri-
ces. H denotes Hermitian. a ∼ CN (µ, σ2) means a is a com-
plex random variable with proper normal distribution with µ
mean and σ2 variance [3]. a ∼ N (µ, σ2) means a is a real
random variable with normal distribution with µmean and σ2

variance. a ∼ E(α) means a is a real random variable with
exponential distribution with α mean and α2 variance [4].

Subarray A has Me sensors and undersampling factor N .
Subarray B has Ne sensors and undersampling factor M. In
the interest of brevity, we exploit metonymy by using the ar-
ray (ULA or CSA) as shorthand for a specific beamformer
processing the array data when it is clear from the context.

2. COPRIME SENSOR ARRAYS

A coprime sensor array (CSA) interleaves two aliased ULAs
with undersampling factors N and M respectively where N
and M are coprime [5–8]. Subarray A and Subarray B of a
basic CSA have M and N sensors respectively and the subar-
rays share the first sensor as shown in Figure 1. Figure 2 illus-
trates the CSA processor. The CSA processor multiplies the
conventionally beamformed Subarray A output with the com-
plex conjugate of the conventionally beamformed Subarray B
output that results in an estimate of the cross power spectrum
of the input signal. The coprimality of the undersampling
factors of the subarrays causes their grating lobes to be in dif-
ferent locations whereas their main lobes overlap completely.
As a result, the CSA power spectrum has no grating lobes and
has a main lobe with width the same as a full ULA with MN
sensors. Hence, a CSA with M +N −1 sensors has the same
resolution as the full ULA with MN sensors. The CSA peak
side lobe height is more than the full ULA. Adding sensors to
the subarrays while keeping their intersensor spacings fixed
reduces the peak side lobe height [5, 8]. This paper assumes
that the numbers of sensors in the subarrays differ by one to
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minimize the total number of sensors [7] and the subarrays
are extended to Me = 3M/2 and Ne = 3M/2 + 1 sensors
to reduce the peak side lobe height to half of the full ULA
with equivalent aperture. The CSA with the added sensors in
the subarrays is called extended CSA (ECSA). The full ULA
with the equivalent aperture as the ECSA with Me = 3M/2
and Ne = 3M/2 + 1 sensor subarrays has 3M/2 · (M + 1)
sensors.
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Fig. 1. a. Subarrays with (M,N) = (4, 5) b. CSA for the
subarrays in (a)
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Fig. 2. The CSA processor multiplies the Subarray A (blue)
and Subarray B (red) outputs resulting in the power estimate
(black) from the look direction. (After Figure 2 of [8])

3. SIGNAL MODELS AND DETECTION TEST
STATISTICS

This paper compares the detection performance of an ECSA
with a standard ULA since the detection performance of a
ULA has been well analysed. This section describes the sig-
nal model and establishes the test statistics for both the ECSA

and the full ULA with the equivalent aperture.

3.1. Full ULA Signal Model and Test Statistic

Consider a ULA with L sensors and intersensor spacing d =
λ/2, where λ is the wavelength of the signal of interest. The
angle made by the input signal with the array axis is θs. As-
sume that the signal and noise are independent zero mean
proper Gaussian random variables [3]. The input to the ULA
is

x = svs + n, (1)

where s ∼ CN (0, σ2
s), n ∼ CN (0, σ2

nIL). The signal com-
ponent is svs and the noise component is n. The L element
vector vs is the array manifold vector for direction θs. The
ith element of an array manifold vector for direction θ is
exp(jπu(i − 1)) where u = cos(θ). The output of the con-
ventional beamformer (CBF) is y = wHx, where w = vs/L
is the weight vector. When the array is steered to the signal
direction, the output of the beamformer for the signal model
in (1) is y = s + vHs n/L = s + η, where η = vHs n/L ∼
CN (0, σ2

n/L).

The CBF detection statistic is the output power tu =
|y|2 = y2R + y2I , where yR and yI are the real and imagi-
nary parts of the proper zero mean Gaussian random vari-
able y, i.e. yR, yI ∼ N (0, σ2

s/2 + σ2
n/(2L)). Since

yR and yI are independent normal random variables with
zero mean and equal variance σ2

s/2 + σ2
n/(2L), the ran-

dom variable tu = y2R + y2I has exponential distribution
f(tu|H1) = E(σ2

s + σ2
n/L) [4], where H1 refers to the alter-

nate hypothesis. In the signal absent case, tu has exponential
distribution f(tu|H0) = E(σ2

n/L), where H0 refers to the
null hypothesis.

3.2. CSA Signal Model and Test Statistic

Consider a CSA with Me and Ne element subarrays with un-
dersampling factors N and M . The subarrays share P = 2
sensors when Me = 3M/2 and Ne = 3M/2 + 1. Since each
subarray is a ULA, the development of input and output mod-
els for the subarrays are similar to the full ULA in section
3.1. The outputs of the two subarrays are ya ∼ CN (0, σ2

s +
σ2
n/Me) and yb ∼ CN (0, σ2

s+σ
2
n/Ne). The correlation coef-

ficient ρ between ya and yb computed by substituting directly
in the definition of correlation coefficient is

ρ =
snr + P

MeNe√(
snr + 1

Me

)(
snr + 1

Ne

) , (2)

where snr = σ2
s/σ

2
n.

The CBF CSA test statistic is tc = |ya| · |yb|. Since, as
shown above, the underlying Gaussian signals ya and yb are
correlated random variables, their magnitudes |ya| and |yb|
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are correlated Rayleigh variables. The PDF g(tc) of the prod-
uct of the two dependent Rayleigh variables is [9, 10]

g(tc|H1) =
4tc

σ2
aσ

2
b (1− ρ2)

· I0
(

2tc|ρ|
σaσb(1− ρ2)

)
·

K0

(
2tc

σaσb(1− ρ2)

)
,

(3)

where I0(·) and K0(·) are the zeroth order modified Bessel
functions of the first and second kind, respectively, and σ2

a and
σ2
b are the variances at the outputs of Subarray A and Subar-

ray B, respectively. Equation (3) is the alternate hypothesis
PDF for the CSA. When there is no signal present in the en-
vironment, the subarray outputs are still correlated since they
share P elements. However, for small P the correlation co-
efficient between the subarray outputs is negligibly small and
the CSA test statistic approaches the product of two indepen-
dent Ralyleigh variables resulting in the K-distribution PDF
g(tc|H0) given by [9, 10]

g(tc|H0) =
4tc
σ2
aσ

2
b

·K0

(
2tc
σaσb

)
. (4)

4. RESULTS

This section derives the analytical expressions for receiver op-
eration characteristics (ROC) for both the CSA and the full
ULA with equivalent aperture using the PDFs derived in Sec-
tion 3.

The probabilities of false alarm and detection in ULA are

Pfa,u = Pr(tu > γ|H0) = exp

(
−γ
σ2
u0

)
and

Pd,u = Pr(tu > γ|H1) = exp

(
−γ
σ2
u1

)
,

where γ is the threshold, and σ2
u0 and σ2

u1 are the full ULA
output variances for null and alternate hypotheses respec-
tively. The probabilities of false alarm and detection in CSA
are

Pfa,c = Pr(tc > γ|H0) =

∫ ∞
γ

g(tc|H0)dtc

and

Pd,c = Pr(tc > γ|H1) =

∫ ∞
γ

g(tc|H1)dtc.

No closed form expression exists for the CSA Pd and
Pfa, so they are obtained using numerical integration. The
green dashed line in Figure 3 represents the full ULA ROC
curve evaluated using the analytical expressions for Pfa,u
and Pd,u while the black dashed-dot line represents the CSA
ROC curve obtained by evaluating the expressions Pfa,c and

Pd,c using global adaptive quadrature method of numerical
integration with the PDFs in (3) and (4). Figure 3 compares
the analytical ROC curves against the corresponding Monte-
Carlo simulations curves obtained by generating 100, 000
samples of the array output and calculating the probabilities
of detection and false alarm at each threshold level. The sen-
sor SNR for the plots in Figure 3 is 0 dB and the coprime pair
is (8, 9). The full ULA has 108 sensors while the subarrays
have 12 and 13 sensors, yielding 23 sensors for the CSA. The
comparison of the analytical plots against the simulated ones
confirms the accuracy of the analytical expressions for both
full ULA and CSA.
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Fig. 3. Comparison of the ROC curves obtained from analyti-
cal expressions (green solid line for CSA and black solid line
for CSA) and Monte-Carlo simulations (discrete circles for
ULA and discrete squares for CSA) for full ULA and CSA.

Figure 4 compares the CSA and ULA ROC curves for
coprime pairs (M,N) = (12, 13) (red), (8, 9) (green) and
(4, 5) (blue) where the SNR is 0 dB. The solid lines repre-
sent the ULA curves and the dashed-dot lines represent the
CSA curves. For each coprime pair, the correpsonding ULA
curve is above and to the left of the CSA curve confirming that
the ULA has better detection performance than the CSA with
the same resolution. Intuitively, this seems reasonable since
the CSA has fewer sensors to average the uncorrelated white
noise. Figure 4 also shows that the gap in the ROC curves
for the ULA and the CSA increases as the coprime factors
increase. This makes sense because as the coprime factors in-
crease, the difference in the numbers of sensors between the
CSA and full ULA also increases.

Asymptotic expansions of Bessel functions I0(·) and
K0(·) [11, Page 920] reduce the alternate hypothesis PDF of
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Fig. 4. Comparison of the detection performance of CSA and
full ULA at equal SNR
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Fig. 5. Comparison of the detection performance of CSA and
full ULA at different SNRs

CSA test statistic in (3) to

g(tc|H1) ≈
1

σaσb
√
ρ
· exp

(
−2tc

σaσb(1 + ρ)

)
. (5)

Assuming high SNR and Me +Ne ≈ 2Me for large Me, and
plugging in the expression for ρ from (2), the PDF g(tc|H1)

is approximately E
(
σ2
s

(
1 + 1

2Me·snrc

))
, where snrc is the

input SNR. The full ULA detection statistic has the PDF
E
(
σ2
s

(
1 + 1

L·snru

))
, where snru is the input SNR. If

snrc = snru · L/(Me + Ne) ≈ snru · L/(2Me), the CSA

PDF converges to the full ULA PDF.
Figure 5 compares the full ULA and CSA ROC curves

for different coprime pairs where the SNR for the CSA is
L/(Me+Ne− 2) times the full ULA SNR. The dashed lines
with diamonds represent the full ULA ROC curves all at 0
dB SNR. The full ULAs have 30 (red), 108 (green) and 234
(blue) sensors.The dashed-dot lines with circles are the CSA
ROC curves at 4.3 dB SNR with coprime pair (4, 5) (red),
6.7 dB SNR with coprime pair (8, 9) (green) and 8.2 dB SNR
with coprime pair (12, 13) (blue). These CSAs have the same
aperture as the full ULA with 30, 108 and 234 sensors respec-
tively. When the input SNRs are equal, a full ULA performs
better than a CSA with the equivalent aperture. If the CSA
input SNR is increased by L/(Me + Ne − 2), the CSA de-
tection performance matches that of the ULA, as shown in
Figure 5. For example, a CSA with coprime pair (4, 5) at 4.3
dB performs as well as the equivalent full ULA at 0 dB. This
shows that even though the CSA employs a nonlinear product
processor, the detection gain of a CSA product detector is still
proportional to the number of sensors like the ULA detector.

5. CONCLUSION

This paper derives the exact PDFs for the CSA test statistics
for both alternate and null hypotheses and finds the analyti-
cal ROC curves. This paper shows that the detection gain of
the CSA is 10 log10(Number of sensors) dB for large coprime
pairs and large SNR and explains why the detection gain for
the non-linear CSA product processor has the same depen-
dence on the number of sensors as the linear CBF for a ULA.
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