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ABSTRACT

In this paper, we explore the use of temporal signal coher-
ence to increase the degrees of freedom in a non-uniform
under-sampled linear moving array. In particular, we develop
bounds on the minimum Temporal-Coherence-Period (TCP)
required to synthetically fill-in missing inter-element sensors
in a moving array system. In addition, we show how an ex-
isting technique that exploits properties of the sensor co-array
can be used to overcome positive-definite deficiency in the
spatial covariance matrix estimate derived from the synthetic
sensor array. This type of synthetic aperture processing fa-
cilitates the localization of a number of far-field sources on
the order of the number of half-wavelength sensor spacings
over the array aperture, rather than on the number of sensors
present in the sparse array.

Index Terms— Co-Prime Linear Array, Synthetic Aper-
ture Methods, Rank Enhanced Spatial Smoothing

1. INTRODUCTION

Synthetic Aperture (SA) methods are well known techniques
for exploiting platform motion for sensor array systems. Syn-
thetic aperture methods use temporal signal coherence to
achieve improved array processing performance across a syn-
thesized array aperture. Traditional SA techniques require
temporal coherence that is proportional to the time required
for the array to travel the distance of the entire physical
aperture. These methods have been used to improve angular
resolution and signal gain over that provided by the physical
array [1–4].

While typically SA methods are used with spatially uni-
formly sampled arrays, the class of physical arrays studied
in this paper are non-uniformly spatially under-sampled ar-
rays known as co-prime sensor arrays. A co-prime array is
a sparse array formed by nesting two uniform linear arrays
(ULA’s) with inter-element spacings M λ

2 and N λ
2 , where M

and N are co-prime integers.
Co-prime arrays are of particular interest because this

geometry provides the required spatial covariance measure-
ments required to identify more sources than the number of
sensors present in the array [5]. In addition, they are sparse

arrays that can be designed to span large apertures with rel-
atively few sensor elements, by simply nesting two different
ULA’s. The ease of forming a co-prime array can be con-
trasted with the Minimally Redundant Line Array (MRA),
which for large apertures is computationally expensive to de-
termine where to place the sensor elements [6, 7]. However,
the spatial covariances afforded by a co-prime array only
account for half of the array aperture. To mediate this short-
coming, co-prime sensor arrays have been recently studied
by the authors in the synthetic aperture framework [8]. It was
shown by using SA methods, the achievable resolution of the
co-prime array can be increased from the typical half-aperture
resolution limit to the full extent of the physical aperture.

The focus of this paper is to develop minimum temporal
coherence criteria needed to maximize the degrees of free-
dom of a SA co-prime sensor array system. In addition, we
show how the Rank Enhanced Spatial Smoothing algorithm,
proposed by [9], can be used to overcome positive-definite de-
ficiency in the Direct Augmentation Algorithm for covariance
matrix estimation.

2. SYNTHETIC APERTURE ARRAY MODEL

Consider a co-prime array with a physical aperture L meters
composed of Q = M + 2N −1 sensors. This geometry is the
result of nesting two ULA’s, one with inter-element spacing
of M λ

2 array with 2N sensors and the other ULA with N λ
2

element spacing and M sensors, where N < M . Assume
the array moves with a constant velocity v along a staight-
line course and that K static radiating sources with common
frequency Ω0 and bearings θ1, · · · , θK are in the far-field of
the array.

The Doppler shifted plane-wave signal received at the ar-
ray from the l-th source is given by,

sl(t) = αl exp(jΩ0t) exp(−jΩ0
vt sin(θl)

c
)b(θl) (1)

whereαl ∼ CN (0, σ2
l ), and b(θl) = [1, exp(−jΩ0

d1 sin(θl)
c ),

· · · , exp(−jΩ0
dQ−1 sin(θl)

c )]> is the array manifold vector.
The sensor locations relative to the left most sensor are given
by d1, · · · , dQ−1. The snapshot collected at the array at time
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t from a K-source field is given by,

x(t) =
∑K
l=1 sl(t) + w(t), w(t) ∼ CN (0, σ2

wIQ) (2)

Array motion is used for synthetically inserting sensor el-
ements into the co-prime array. The increase of the dimension
of the array manifold vector leads to an increase in the degrees
of freedom of the array [9]. To insert sensors at integral mul-
tiples of half-wavelengths, let τ be the time for the array to
travel a distance of λ2 meters. The synthetic array snapshot is
then formed by appropriately interleaving the physical array
snapshots from times t, t + τ ,· · · , and t + nτ . For a more
in-depth development of the synthesis process see [8].

Spatial processing across the synthetic array snapshot re-
quires temporal coherence over the synthesis time interval.
The coherence time interval is a function of the number of
physical array snapshots used to form the synthetic array.

3. MINIMUM TEMPORAL-COHERENCE-PERIOD
ARRAY SYNTHESIS

Our objective is to minimize the Temporal-Coherence-Period
(TCP) such that the degrees of freedom for a moving co-prime
array are maximized over the array aperture. The degrees of
freedom of a line array are related to the number of spatial co-
variances that can be observed from the array snapshot. For
a given array snapshot the co-array tells us if and how many
times a spatial lag has been measured. For co-prime arrays,
Vaidyanathan and Pal have shown the co-array has a hole-free
contiguous region of approximately half of the array aper-
ture [9] [10]. This hole-free region is directly related to the
degrees of freedom present in the array and is the primary rea-
son the co-array plays a central role in SA methods [11]. For
co-prime arrays we have O(MN) degrees of freedom from
only M + 2N − 1 sensors. Ramirez Jr. et al. have devel-
oped an upper bound on the TCP required to produce a filled
co-array without synthesizing every missing sensor over the
array aperture in a moving co-prime sensor array system [8].
This however, only provides a sufficient condition for filling
the co-array. The necessary and sufficient condition for min-
imizing TCP while maximizing the degrees of freedom over
the array aperture of a moving co-prime array, is developed
here, and can be formalized as,

Lemma 3.1 The minimum Temporal-Coherence-Period for a
(N,M) λ/2 co-prime array withM+2N−1 sensor elements
and N < M to have a hole-free co-array across the array
aperture is given by TCP = η0τ where,

η0 =

{
N
2 if N is even
N−1
2 if N is odd

(3)

and τ is the time required for the array to travel a distance of
λ/2 meters.

To justify Lemma 3.1 we need to show that for the above
value of η0 the corresponding co-array is hole-free and that
for any γ < η0 the co-array will contain at least one hole.
Figure 1 shows a diagram of the general setting for the co-
prime array. The major concepts in proving this Lemma are
presented in what follows.

Fig. 1. (a) Co-prime array, (b)-(c) Co-prime array compo-
nents with synthetic aperture window (shaded regions). (d)
Co-array Index Partition

The co-array for a thinned regular array is defined as the
autocorrelation of the array element weights

c(l) =
∑P−|l|−1
m=0 hmh

∗
m+|l| (4)

where hm ∈ {0, 1} and P is the number elements in the full
aperture. The vector h =

[
h0, h1, · · · , hP−1

]>
encodes if a

sensor is missing ,0, or present ,1, in the aperture.
To show that the co-array is hole-free for η0 we consider

the following partition on the spatial lag indices, l:
Case 1: 0 ≤ l ≤ MN − 1, In this case, the co-array is hole-
free since the physical array is co-prime.
Case 2: MN ≤ l ≤ (2N − 1)M − 1, We observe that for
any value l within this range the autocorrelation of the sensor
weights contains the contiguous set of active elements in the
last η0 + 1 section of the array aperture (red box in Figure 1
(b)). It can be shown that this section of aperture is larger than
any hole in theN λ

2 subarray component of the co-prime array
(red box in Figure 1 (c)). With this property in mind we have
the following lower bound on c(l) for l within this range,

c(l) =
∑P−1−|l|
m=0 hmhm+|l| (5)

>
[
hP−1−|l|−η0 · · · hP−1−|l|

]
At least one non-zero element

 h(2N−1)M
...

h(2N−1)M+η0


1’s Vector

≥ 1

For spatial lags in the range MN ≤ l ≤ (2N − 1)M − 1, we
can see that c(l) > 0 and is therefore hole-free.
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Case 3: (2N − 1)M ≤ l ≤ (2N − 1)M + η0, In this range
both h0 and hl are non-zero and a lower bound on the co-array
value given by, c(l) > h0hl = 1.

We can therefore conclude that for η0 the co-array is filled
over the entire aperture of the synthetic array.

Next, to show that for any γ < η0 the co-array will contain
at least one hole, let γ = η0 − 1 and consider the following
cases partitioned by the magnitude of the co-prime factor N :
Case 1: N = 2 or 3, In this situation, η0 = 1 and sub-
sequently γ = 0. Here no sensor synthesis is performed and
therefore the holes in the co-array are inherited from the phys-
ical co-prime array.
Case 2: N ≥ 4, In this situation, c(l?) = 0 for,

l? =

{
P − 1−N + 1 if N is even
P − 1− (N − 1)− 1 if N is odd

(6)

with P − 1 = (2N − 1)M + γ. The co-array expression for
c(l?) can be partitioned into,

c(l?) =
∑P−1−|l?|
m=0 hmhm+|l?| (7)

=
[
h0 · · · hg

] 0’s Vector hl?
...

h(2N−1)M−1


+

[
hg+1 · · · hP−1−l?

]
0’s Vector

 h(2N−1)M
...

h(2N−1)M+γ

 = 0

Here the first term becomes zero since hl for l∗ ≤ l ≤ (2N −
1)M − 1 represent inactive sensor elements. To verify this it
can be shown that (2N − 2)M + γ < l∗.

The second term becomes zero since hl for g + 1 ≤ l ≤
P − 1− l? represents inactive sensor elements. To verify this
it can be shown that γ < g+1 and that P −1− l? < N where
g = (2N − 1)M − 1− l?.

We can therefore conclude that c(l?) = 0 when γ < η0
and γ = η0 − 1, the co-array will have at least one hole.
For subsequent smaller values of γ the hole found at l? will
persist and the number of holes in the co-array will increase
approaching the total number of holes found in the physical
co-prime array.

This Lemma suggests that the minimum TCP is a func-
tion of the co-prime factor N and independent of the larger
co-prime factor M . From this perspective, we can see that
the minimum TCP is proportional to the time required for the
array to travelN2

λ
2 (m) of the physical aperture.

The significance of the minimum TCP is that it describes
the minimum distance required for a co-prime sensor array
needs to travel for SA methods to produce a filled co-array.
The hole-free co-array over the array aperture provides a full
set of spatial covariances required to maximize the degrees of
freedom required for signal subspace based source localiza-
tion. The advantage of the work presented here is that via SA

methods we are able to maximize the degrees of freedom over
a given aperture with the minimum total synthesis time.

4. SPATIAL COVARIANCE AUGMENTATION

SA methods applied over the minimum TCP produce a full set
of spatial covariances over the aperture of the non-uniformly
sampled array, but does not lead directly to a positive-definite
covariance matrix. Using the Direct Augmentation Algorithm
(DAA), the co-array and the available spatial covariances pro-
vide an estimate of the l-th lag of the spatial covariance given
by,

R̂x(l, t) =
1

c(l)

∑
(m1,m2)∈V(l)

m1≤m2

(x(t))m1
(x(t))∗m2

(8)

where V(l) is the set of array snapshot element index pairs
whose difference is l. By collecting the samples into a
Toeplitz matrix, we can obtain an estimate of the aug-
mented spatial-covariance matrix. However, estimating the
covariance matrix in this manner does not guarantee positive-
definiteness and may lead to negative eigenvalues in the
spatial covariance matrix estimate. Abramovich et al. has
proposed methods for Toeplitz Positive-Definite covariance
matrix completion from the DAA spatial covariance matrix
estimate [12]. However, these methods lead to unstable local-
ization results and are computationally expensive.

Vaidyanathan and Pal have proposed a Rank Enhanced
Spatial Smoothing (RESS) algorithm that exploits the hole-
free co-array property of the co-prime array [5, 9]. In this
work, they have shown how to develop a positive-definite
spatial covariance matrix for source localization from the co-
prime array snapshot vector. The RESS algorithm can be ap-
plied to other array geometries that have hole-free co-arrays.
Shakeri et al. have applied the RESS algorithm to Sparse
Ruler Array designs for the localization of more sources than
sensors [13].

The RESS algorithm for the minimum TCP synthetic ar-
ray can be described in the following major stages, a detailed
mathematical description can be found in [9]:
Stage 1: Co-array

The co-array is hole-free for spatial lags in the range, 0 <
l < (2N − 1)M + η0. This corresponds to an underlying
ULA with J = (2N − 1)M + η0 + 1 sensor elements.
Stage 2: Direct Data Covariance (DDC)

Since the co-array for the synthetic array is hole-free, spa-
tial covariances for lags 0 < l < (2N −1)M +η0 are present
in the DDC matrix, the outer product of the synthetic array
snapshot Rx′(t) = x′(t)x′H(t).
Stage 3: Vectorize DDC

y = vec(Rx′(t)) = Bp + σ2
nê (9)
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Where B is a Q′
2 × K complex matrix and each col-

umn of B is the Kronecker product between the array mani-
fold vectors of the sparse array and their conjugates and p =[
σ2
1 , · · · , σ2

K

]>
, ê =

[
e>1 , e

>
2 , · · · , e>Q′

]
, with ei a vector of

all zeros except for the i-th element.
Stage 4: (2J − 1)-ULA

Each column of B has 2J − 1 distinct values. These dis-
tinct values can be used to form the spatial covariances from a
uniform linear array with 2J − 1 sensors. This ULA is devel-
oped by extracting the distinct rows of B, this results in a new
matrix B1 with dimensions (2J − 1) × K. The columns of
B1 form the array manifold vectors for a uniform line array
with 2J − 1 sensors with a phase center at the J-th sensor.
Stage 5: J-ULA Subarray The (2J − 1)-ULA can subdi-
vide into overlapping J-ULA subarrays. The J-ULA subar-
ray snapshot can be written as, y1,i = B1ip + σ2

ne
′
i where

B1i is the J × K array manifold vector matrix for the i-th
subarray and e′i is a zeros vector except for a 1 in the i-th po-
sition. For each subarray we can compute the J × J Rank-1
spatial covariance matrix as, R1i = y1,iy

H
1,i.

Stage 6: Rank Enhancement

Rsx′(t) =
1

J

J∑
1=1

R1i (10)

Theorem 1 in [5] proves that Rsx′(t) has the same form as the
positive-definite spatial covariance matrix of a ULA with J
sensors. This matrix provides access to the degrees of free-
dom on the order of the synthetic array aperture.

5. NUMERICAL SIMULATIONS

To examine the above synthesis algorithm we consider a co-
prime physical array with N = 3 and M = 5 and aperture of
L = 25λ2 (m). The synthetic array is formed by using tem-
poral coherence period of TCP = η0τ where η0 = 1 and τ is
the time required to travel a distance of λ2 (m). The synthetic
array has a total aperture of L′ = 26λ2 (m) and consists of 10
physical sensors and 8 virtual sensors. The SNR of the sig-
nal field was chosen to be unity and is made up of 18 far-field
sources uniformly distributed between−70◦ and 70◦, relative
to array broadside. The wave propagation speed, array veloc-
ity and signal frequency Ω0 were chosen to be 1.3ms , 1500ms ,
and 1500Hz, respectively.

A total of 200 snapshots are utilized to estimate the DDC
matrix Rx′(t). For each snapshot the minimum TCP is used
to form the synthetic array snapshot. The RESS algorithm is
then applied to produce a positive definite spatial covariance
matrix for source localization via the MUSIC algorithm. Fig-
ure 2 and 3 shows the results of the synthesis algorithm and
source localization performance. Here we see that after syn-
thesis with the minimum TCP, the co-array for the synthetic
array is hole-free and we are able to localize all 18 far-field
sources.

Fig. 2. Array geometry and co-array for (N = 3,M = 5) co-
prime physical and synthetic array. × and �mark the physical
and virtual sensor, respectively.
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6. CONCLUSIONS

We have found the minimum temporal coherence period
needed to fill the co-array of a moving co-prime array. This
factor is proportional to only a fraction of the total aperture.
By using the RESS algorithm we are able to transform the
DDC estimate of the spatial covariance matrix into a positive-
definite matrix that encodes the angles of arrivals of sources
in the wave-field. This covariance estimate has been used to
identify more sources than physical sensors in the moving
co-prime array. Future work will examine the rank of the
smoothed covariance matrix and develop methods to achieve
the localization performance of the J-ULA.
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