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ABSTRACT

In this paper, we propose a direction-of-arrival estimation

method by covariance matrix sparse reconstruction of co-

prime array. Specifically, source locations are estimated by

solving a newly formulated convex optimization problem,

where the difference between the spatially smoothed covari-

ance matrix and the sparsely reconstructed one is minimized.

Then, a sliding window scheme is designed for source enu-

meration. Finally, the power of each source is re-estimated

as a least squares problem. Compared with existing methods,

the proposed method achieves more accurate source localiza-

tion and power estimation performance with full utilization

of increased degrees of freedom provided by coprime array.

Index Terms— Compressive sensing, coprime array,

direction-of-arrival estimation, source localization, power

estimation.

1. INTRODUCTION

Coprime sampling is an innovative concept recently proposed

for array signal processing. Coprime sampling uses a co-

prime array [1, 2], which has the distinguishing property that

it can increase the degree of freedom (DOF) to MN with on-

ly M +N − 1 sensor elements [3]. Traditionally, the DOF of

direction-of-arrival (DOA) estimation is limited by the num-

ber of antennae or sensor elements. With coprime array, it

becomes possible to detect more signal sources than the phys-

ical sensor elements. And hence, a lot of research has been

conducted on DOA estimation with a coprime array.

Among these studies, some works consider how to get the

exact source locations, but have not fully exploited the maxi-

mum achievable DOF offered by coprime array [4, 5]. Other

works that consider both DOA estimation performance and

DOF are able to identify more signal sources than the number

of physical sensors, and exploit the distinguishing feature of

coprime array for DOF improvement [3, 6–8]. However, in

the estimated spatial spectrum of these methods, there may
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exist several spurious peaks due to noise in addition to the

peaks from real signal sources. Considering that there is usu-

ally no prior knowledge of the number of sources, it is hard to

distinguish the spurious peaks from real signal sources. Con-

sequently, accurate source localization and power estimation

performance with full DOF utilization for DOA estimation

using coprime array remain a challenging problem.

To overcome this challenge, in this paper, we estimate the

source locations by reconstructing a sparse covariance matrix

to fit a spatially smoothed covariance matrix of the coprime

array. In order to remove the spurious peaks, we propose a

sliding window scheme for source enumeration. After that,

we re-estimate the power of each estimated source through

a least squares problem to construct the precise spectrum for

DOA estimation. The proposed method can achieve more ac-

curate source localization and power estimation performance.

2. SIGNAL MODEL OF COPRIME ARRAY

We consider a pair of uniform linear arrays with M and N
sensor elements, respectively, where M and N are coprime

integers and we assume M < N without loss of generality.

The first array consists of M sensor elements having inter-

element spacing of Nd, whereas the other consists of N sen-

sor elements having inter-element spacing of Md. Generally,

d is chosen as λ/2, where λ denotes the signal wavelength.

The coprime array configuration is shown in Fig. 1 with an

example of M = 3 and N = 5. According to the properties

of coprime integers, other than the first element, the remain-

ing elements do not overlap with each other when the arrays

are aligned. Therefore, the coprime array actually consists of

M +N − 1 distinct physical sensor locations.
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Fig. 1. The coprime array configuration.
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To obtain the consecutive virtual array for increasing the

DOF, we consider doubling the aperture of the sparse unifor-

m linear array with M sensor elements [3] by evaluating the

system’s coarray. The difference coarray, generated from the

coprime array consisting of 2M +N − 1 physical sensor el-

ements, can then be obtained as

Sd =
{± (Mn−Nm)|0 ≤ m ≤ 2M − 1, 0 ≤ n ≤ N − 1

}
,

(1)

from which a consecutive difference coarray set can be cre-

ated with the sensor positions
{ − MNλ/2, −(MN −

1)λ/2, · · · ,−λ/2, 0, λ/2, · · · , (MN − 1)λ/2,MNλ/2
}

.

Therefore, a virtual uniform linear array with an aperture of

MN is obtained to provide the foundation for increasing the

DOF.

Assume there are K far-field uncorrelated narrowband

sources impinging on the extended coprime array with

2M + N − 1 physical sensor elements from the angles

located at θ =
[
θ1, θ2, · · · , θK

]T
. The received signal vector

of the coprime array at the l-th time slot can be expressed as

y(l) =
K∑

k=1

a(θk)sk(l) + n(l) = As(l) + n(l), (2)

where A =
[
a(θ1),a(θ2), · · · ,a(θK)

] ∈ C
(2M+N−1)×K

denotes the steering matrix, s(l) =
[
s1(l), s2(l), · · · , sK(l)

]T
denotes the signal waveform vector, n(l) ∼ CN (0, σ2

nI) de-

notes a vector of independent and identically distributed

Gaussian noise. The k-th column of the steering matrix A is

the steering vector corresponding to the k-th source, i.e.,

a(θk) =
[
1, e−j 2π

λ u2 sin(θk), · · · , e−j 2π
λ u2M+N−1 sin(θk)

]T
,

(3)

where u =
[
u1, u2, · · · , u2M+N−1

]T
denotes the physical

positions of the aligned coprime array sensor elements.

The covariance matrix of the received signal vector y(l)
can be expressed as

R = E
{
y(l)yH(l)

}
=

K∑
k=1

σ2
ka(θk)a

H(θk) + σ2
nI

= APAH + σ2
nI,

(4)

where E{·} denotes statistical expectation, and σ2
k, the k-th

diagonal entry of the diagonal matrix defined by

P = E
{
s(l)sH(l)

}
= diag(σ2

1 , σ
2
2 , · · · , σ2

K), (5)

denotes the average signal power of the k-th source. Consid-

ering that R is unavailable in practice, it is often replaced by

the sample covariance matrix

R̂ =
1

L

L∑
l=1

y(l)yH(l), (6)

where l = 1, 2, · · · , L, and L denotes the number of data

snapshots used to train the matrix.

3. PROPOSED DOA ESTIMATION METHOD

In this section, we describe the proposed DOA estimation

method in detail. To exploit the increased DOF provided by

the coprime array, the sample covariance matrix R̂ in (6) can

be vectorized as

z � vec(R̂) = Bp+ σ2
nĪ, (7)

where B =
[
a∗(θ1)⊗ a(θ1),a

∗(θ2)⊗ a(θ2), · · · ,a∗(θK)⊗
a(θK)

] ∈ C
(2M+N−1)2×K , p = [σ2

1 , σ
2
2 , · · · , σ2

K ]T , Ī =
vec(I), and vec( · ) denotes the vectorization process that s-

tacks the columns of the matrix one by one. The vector z
can be considered to be the received signals due to the virtu-

al array with steering matrix B, which is generated accord-

ing to the physical coprime array. Subsequently, it has been

proposed in [3] that a (2MN + 1) × K dimensional matrix

B1 can be constructed by removing the repeated rows from

the matrix B and sort them, so that the rows in B1 are i-

dentical to the 2MN + 1 consecutive coarray locations from

−MNλ/2 to MNλ/2. By applying the spatial smoothing

method, we divide the consecutive virtual uniform linear ar-

ray into MN +1 overlapping subarrays with MN +1 sensor

elements for each subarray, where the i-th subarray has the

sensors located at
{
(−i + 1 + n)λ/2, n = 0, 1, · · · ,MN

}
.

The vector corresponding to the i-th subarray can be denoted

as

z1i = B1ip+ σ2
nĪ1i, (8)

where B1i ∈ C
(MN+1)×K denotes the matrix corresponding

to the (MN + 2− i)-th through the (2MN + 2− i)-th rows

of B1, and Ī1i denotes a zero vector except a 1 at the i-th
position. Taking the vector z1i as the newly received signal

vector of each overlapping subarray, the spatially smoothed

covariance matrix can be calculated by averaging over the

corresponding covariance matrix of the MN + 1 subarrays

to obtain

Rs =
1

MN + 1

MN+1∑
i=1

z1iz
H
1i. (9)

The spatially smoothed covariance matrix enables us to iden-

tify up to MN sources by only using 2M + N − 1 physi-

cal sensor elements, and hence, the relationship between the

physical sensor elements and the virtual array is constructed.

Subsequently, compressive sensing approaches [9–11]

can be incorporated into the DOA estimation method. Specif-

ically, we replace K in the theoretical covariance matrix by

a much larger integer K̄, which denotes the number of the

potential source locations in a predefined sparse grid, and the

definition of the sparse covariance matrix is

R̃ = ÃP̄ÃH + σ2
nĨ =

K̄∑
k=1

σ̄2
kã(θ̄k)ã

H(θ̄k) + σ2
nĨ, (10)

where P̄ ∈ R
K̄×K̄ denotes the diagonal matrix containing

the powers of K̄ potential signals on the predefined sparse

2370



sample grid with the angles θ̄ =
[
θ̄1, θ̄2, · · · , θ̄K̄

]
, Ã =[

ã(θ̄1), ã(θ̄2), · · · , ã(θ̄K̄)
] ∈ C

(MN+1)×K̄ denotes the steer-

ing matrix of the consecutive virtual uniform linear array with

the aperture of MN + 1, Ĩ denotes the MN + 1 dimensional

identity matrix, and σ̄2
k denotes the power of the sources on

the sparse grid. The diagonal entries of P̄ are sparse, as on-

ly a few non-zero entries will be present on the sparse grid

corresponding to the sources.

By minimizing the difference between the spatially s-

moothed covariance matrix Rs in (9) and the sparsely re-

constructed one R̃ in (10), we formulate the proposed DOA

estimation method as

min
p̄,σ2

n

‖p̄‖0

subject to
∥∥∥Rs − ÃP̄ÃH − σ2

nĨ
∥∥∥2
F
≤ ζ,

(11)

where p̄ ∈ R
K̄×1 denotes the spatial spectrum distributed on

the sparse grid, the corresponding diagonal matrix is P̄. ζ
denotes a specified uncertainty bound that constrains the es-

timation deviation of the spectrum distribution on the sparse

grid, and the l0-norm in the objective function indicates the

number of non-zero elements in p̄. The idea of the source

localization problem in (11) lies in finding the sparsest spa-

tial spectrum p̄ and the noise power σ2
n while minimizing the

difference between the spatially smoothed covariance matrix

Rs and the sparse theoretically reconstructed covariance ma-

trix ÃP̄ÃH + σ2
nĨ. However, the optimization problem (11)

is a NP hard problem because of the l0-norm, and it is unsolv-

able even with moderately sized sparse matrix.

By introducing the l1-norm relaxation, the above opti-

mization problem (11) becomes the basis pursuit denoising

(BPDN) problem [12] as

min
p̄,σ2

n

∥∥∥Rs − ÃP̄ÃH − σ2
nĨ
∥∥∥2
F
+ ξ‖p̄‖1

subject to p̄� 0, σ2
n > 0,

(12)

where ξ denotes a regularization parameter that balances be-

tween the sparsity of the spectrum and the accuracy of the

estimated parameters. Now the DOA estimation problem

has been turned into a convex optimization problem [13],

which can be efficiently solved. The DOA estimations

θ̃ =
{
θ̃1, θ̃2, · · · , θ̃Q

}
can be obtained from the relative

locations of the peaks on the sparse spatial spectrum p̄.

Meanwhile, the corresponding spectrum response of the esti-

mated DOAs p̄(θ̃) can also be obtained.

Note that spurious peaks, which are mainly caused by l1-

norm relaxation operations, may emerge in the sparse spatial

spectrum, i.e., Q > K. Since the number of sources K is a
priori unknown, to achieve an accurate estimate of the num-

ber of sources for source localization, we propose to use a

sliding window scheme to classify the signal response peaks

and the spurious peaks in p̄(θ̃). Specifically, when the spec-

1p 2p 3p
L LKp Qp1Kp +

Sliding Window
nb

Fig. 2. The proposed sliding window scheme.

trum responses in p̄(θ̃) are sorted in decreasing order as

p̄1 ≥ p̄2 ≥ · · · ≥ p̄K ≥ p̄K+1 ≥ · · · ≥ p̄Q, (13)

we apply the sliding window scheme as illustrated in Fig. 2.

The window bn slides across the spectrum step by step. The

decision variable is

D(n) =
bn

bn+1
, n = 1, · · · , Q− 2, (14)

where bn =
∑q=n+1

q=n p̄q . When both sliding windows are in

the signal category
{
p̄q, q = 1, 2, · · · ,K}

or in the noise cat-

egory
{
p̄q, q = K+1,K+2, · · · , Q}

, the decision variable is

nearly constant because bn and bn+1 contain the signal energy

or the noise energy. While there is a noticeable gap between

the signal response peaks and the noise response peaks, the

energy contained in the front sliding window bn is much larg-

er than the following sliding window bn+1 when the windows

move to the critical point. Therefore, the critical point is the

maximum value of the decision variable D(n) derived from

the recursive formula in (14). Thus, the number of sources is

K̂ = argmax
n

D(n). (15)

We consider the K̂ largest components in p̄(θ̃) as the signal

response peaks, and the DOAs can be obtained from the rela-

tive locations of these peaks as θp =
[
θp1 , θp2 , · · · , θpK̂

]
.

To improve the performance of DOA estimation from the

perspective of source localization as well as power estimation,

denoting θp as prior information, we re-estimate the power in

the spectrum by simplifying the convex optimization problem

in (12) as

min
p̄(θp)

∥∥∥Rs − Ã(θp)P̄(θp)Ã
H(θp)− σ̂2

nĨ
∥∥∥2
F

subject to p̄(θp) � 0,

(16)

where p̄(θp) ∈ R
K̂×1 denotes the enhanced power estima-

tion of θp, and the corresponding diagonal matrix is P̄(θp).

Ã(θp) ∈ C
(MN+1)×K̂ denotes the steering matrix of the

estimated DOAs, σ̂2
n is approximately replaced by the min-

imum eigenvalue of the spatially smoothed covariance matrix

Rs. According to [14], the problem in (16) belongs to an

inequality-constrained least squares problem, and the solution

to (16) can be expressed as

p̄(θp) = (GHG)−1GHr, (17)
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(a) MUSIC method by coprime array in [3].
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(b) Sparse signal reconstruction method in [6].
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(c) Proposed DOA estimation method.

Fig. 3. Comparison of the spatial spectrum for each DOA estimation method using coprime array.

where G ≡
[
vec

(
ã(θp1

)ãH(θp1
)
)
, vec

(
ã(θp2

)ãH(θp2
)
)
, · · · ,

vec
(
ã(θpK̂

)ãH(θpK̂
)
)] ∈ C

(MN+1)2×K̂ , and r ≡ vec(Rs −
σ̂2
nĨ) ∈ C

(MN+1)2×1. Finally, we combine the estimated

source locations θp and the enhanced power estimation (17)

as

p̄(θ) =

{
p̄(θp), θ ∈ θp

0, θ /∈ θp.
(18)

Intuitively, only K̂ elements in p̄ corresponding to the esti-

mated sources are non-zero. The combination of these two

steps represents an approximation to the solution to (11).

4. SIMULATION ANALYSIS

In our simulations, the coprime array consists of a pair of

sparsely-spaced uniform linear arrays with M = 3 and N =
5 omni-directional sensors, respectively. It is equivalent to

2M +N − 1 = 10 physical sensor elements for the proposed

DOA estimation method. The additive noise is modeled as

a zero-mean white Gaussian random process. There are 12

distinct external source signals from directions uniformly dis-

tributed from −50◦ to 50◦. The range of the angles for the

predefined sparse grid is within [−90◦, 90◦] with the stepsize

γ = 0.1◦ between the adjacent grid points. For each simula-

tion scenario, 1000 Monte-Carlo trials are performed.

In Fig. 3, we plot the normalized spectrum of the MUSIC

method for coprime array in [3], the sparse signal reconstruc-

tion method in [6] and the proposed method, with the same
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Fig. 4. Performance comparison of the sliding window

scheme and the SORTE method. (a) Accuracy versus SNR

with the number of snapshot L = 500, (b) accuracy versus

the number of snapshot with SNR = 0dB.

simulation condition SNR = 0 dB and L = 500. For fair

comparison, the coprime array structure for the sparse signal

reconstruction method is set to be M = 5 and N = 6, so

that all of the methods conducted in the simulation are equiv-

alent to 10 physical sensor elements. As recommended in [6],

ξ = 0.25 is chosen as the regularization parameter.

All of the spectra shown in Fig. 3 can identify 12 sources

with only 10 physical sensor elements, therefore, the effec-

tiveness of the coprime array for improving the DOF is ver-

ified. As depicted in Fig. 3(a), most of the responses in the

spectrum are underestimated, and the spurious peaks are hard

to distinguish. In Fig. 3(b), several spurious peaks appear in

the sparse grid for the sparse signal reconstruction method,

and the corresponding responses are relatively large and ir-

regular, leading to the difficulty of the estimation process. In

contrast, the proposed spectrum shown in Fig. 3(c) is uni-

formly distributed with only 12 peaks, and all of the normal-

ized spectrum responses for each source are close to one.

In Fig. 4, we compare the performance of the slid-

ing window scheme for source enumeration to the SORTE

method [15] by defining a parameter accuracy, which shows

the percentage of correct source enumeration in the Monte-

Carlo simulations. It can be seen from Fig. 4(a) that the

performance of the sliding window scheme is better than the

SORTE method when SNR is larger than −5dB. The accura-

cy versus the number of snapshot shown in Fig. 4(b) shows

that the sliding window scheme has better performance than

the SORTE method. Thus, the overall performance of the

sliding window scheme is better than the SORTE method. In

conclusion, the comparison demonstrates that the proposed

DOA estimation method can avoid spectrum leakage and

achieve better spectrum performance than the other DOA

estimation methods that exploit coprime arrays.

5. CONCLUSIONS

We have proposed a DOA estimation method by covariance

matrix sparse reconstruction of coprime array. The optimiza-

tion problem is formulated, and the sliding window scheme

is proposed for source localization. The signal power of

each source is re-estimated after the DOA estimates are ob-

tained. Simulation results demonstrate the superiority of the

proposed DOA estimation method in terms of source local-

ization, power estimation, and the achievable DOF.
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