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ABSTRACT
In multiple-input multiple-output radar systems, it is usually
desirable to steer transmitted power in the region-of-interest.
To do this, conventional methods optimize the waveform co-
variance matrix, R, for the desired beampattern, which is then
used to generate actual transmitted waveforms. In this pa-
per, we provide a low complexity closed-form solution to de-
sign covariance matrix for the given planar beampattern using
the planar array, which is then used to derive a novel closed-
form algorithm to directly design the finite-alphabet constant-
envelope waveforms. The proposed algorithm exploits the
two-dimensional fast-Fourier-transform. The performance of
our proposed algorithm is compared with the existing meth-
ods that are based on semi-definite quadratic programming
with the advantage of a considerably reduced complexity.

Index Terms— Multiple-input multiple-output radars,
beampattern design, closed-form solution, waveform design,
two-dimensional fast-Fourier-transform.

1. INTRODUCTION
Colocated multiple-input multiple-output (MIMO) radar

has a number of advantages over the classical phased-array
radar such as improvement in parameter identifiability and
enhanced flexibility to design transmit beampatterns [1–6].
In fact, the latter subject has lately attracted extensive atten-
tion where we aim to focus the transmitted power in a cer-
tain region-of-interest (ROI) [7–12]. It is known that the
transmit beampattern of a colocated antenna array depends
on the cross-correlation between the transmitted waveforms
from different antennas. Therefore, to design variety of trans-
mit beampatterns, early solutions have relied on the follow-
ing two-step process [7–13]. In the first step, the user de-
signs the waveforms covariance matrix such that the theo-
retical transmitted power matches the desired beampattern as
closely as possible. The second step involves the design of
the actual waveforms that can realize the designed covari-
ance matrix. Efficient algorithms are proposed in [8, 11, 14]
to synthesise the waveform covariance matrix for the given
beampattern. All of them are iterative approaches optimizing
some constrained problems. These algorithms are computa-

tionally very expensive for real-time applications. A closed
form solution, to find the waveform covariance matrix, which
is based on fast-Fourier-transform (FFT) has been lately pro-
posed in [15]. We have noticed that the solutions proposed
in the previous work deal only with linear array and the ROI
is defined only by the azimuth angle θ. In the planar array
radar systems, the transmitting antennas form a plan and an
additional dimension called the elevation angle φ is taken into
account in order to provide a larger radar aperture. In this pa-
per, we present a closed-form solution to design the waveform
covariance matrix, for the desired 3D beampatterns, using a
planar array radar. To reduce the computational complexity,
the 3D beampattern design problem is mapped onto the two
dimensional fast-Fourier-transform (2D-FFT). The algorithm
in [15] can be considered as a special case of our proposed
algorithm. Next, by exploiting the derivations of the covari-
ance matrix in the proposed algorithm, a novel method to
directly design the finite-alphabet constant-envelop (FACE)
waveforms is also proposed. The direct design of waveforms
does not require the synthesis of any covariance matrix and
the performance is same compared with the method using co-
variance matrix. Therefore, the proposed direct design of the
waveforms yields significant reduction in computational com-
plexity and can achieve the best possible performance among
the existing direct waveform design algorithms.
Notations: Small letters, bold small letters, and bold capital
letters respectively designate scalars, vectors, and matrices. If
A is a matrix, then AH and AT respectively denote the Her-
mitian transpose and the transpose of A. v(i) denotes the ith

element of vector v. A(i, j) denotes the entry in the ith row
and jth column of matrix A. The Kronecker product is de-
noted by ⊗. Modulo M operation on an integer i is denoted
by 〈i〉M and bicM denotes the quotient of i over M . Finally,
the statistical expectation is denoted by E{·}.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

Consider a MIMO radar system with a rectangular planar-
array, composed of M ×N omnidirectional antennas, placed
at the origin of a unit radius sphere. As shown in Fig. 1, the
inter-element-spacing (IES) between any two adjacent anten-
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nas in the x and y-axis directions is dx and dy , respectively.
If a spatial location around this planar-array has an azimuth
angle θ and an elevation angle φ, the corresponding Cartesian
coordinates of this location can be written as

x = sin(φ) cos(θ) and y = sin(φ) sin(θ). (1)

Fig. 1: Linear planar array of M ×N transmit antennas.

Now we define the baseband transmitted signal vector
containing the transmitted symbols from all antennas at time
index n as

x(n) = [x0,0(n), . . . , x0,N−1(n), . . . , xM−1,N−1(n)]
T
,

where xp,q(n) denotes the transmitted symbol from the an-
tenna at the (p, q)th location at time index n. Assuming that
the distance between any two adjacent antennas on the x-axis
and y-axis direction is λ/2, the signal received by a target at
a location defined by θ and φ can be written as

r(n; θ, φ) =

M−1∑
p=0

N−1∑
q=0

xp,q(n) e
j2πq

sin(φ) cos(θ)
2 ej2πp

sin(φ) sin(θ)
2 .

By exploiting the relationship between the spherical and
Cartesian coordinates, given in (1), one can write the received
signal in terms of Cartesian coordinates as

r(n; fx, fy) =

M−1∑
p=0

N−1∑
q=0

xp,q(n)e
j2π(qfx+pfy), (2)

where

fx =
sin(φ) cos(θ)

2
and fy =

sin(φ) sin(θ)

2
(3)

are the normalised Cartesian coordinates of the spatial loca-
tion. The received signal in (2) can be written in vector form
as

r(n; fx, fy) = aHs (fx, fy) x(n), (4)

where

as(fx, fy) =


1

ej2πfy

...
ej2π(M−1)fy

⊗


1
ej2πfx

...
ej2π(N−1)fx

 . (5)

Using (2), the received power at the location (fx, fy) can be
easily written as
B(fx, fy) = E{aHs (fx, fy) x(n) x(n)

H as(fx, fy)}
= aHs (fx, fy) R as(fx, fy), (6)

where R = E{x(n)x(n)H} is the MN ×MN covariance
matrix of the transmitted waveforms. In the conventional
transmit beampattern design problem, a covariance matrix,
R, is synthesized to match the transmitted power B(fx, fy)
to the desired beampattern which involves the minimization
of the following cost function

J(R) =

L∑
l=1

K∑
k=1

∣∣∣aHs (fx(l), fy(k))Ras(fx(l), fy(k))

−αPd(fx(l), fy(k))
∣∣∣2
2
, (7)

where Pd(fx(l), fy(k)) is the desired beampattern defined
over the two dimensional grid

(
{fx(l)}Ll=1, {fy(k)}Kk=1

)
and

α is a scaling factor. For practical reasons the covariance ma-
trix R should be positive semi-definite with equal diagonal
elements. Therefore, we define the following minimization
problem

min J(R)

subject to
C1 : R � 0

C2 : R(n, n) = c, n = 1, 2, . . . ,MN.

(8)

The constrained problem in (8) can be optimally solved us-
ing an iterative SQP method [8]. However, for large number
of antennas the computational complexity of SQP method be-
comes prohibitively high. Therefore, such solutions are not
feasible for planar arrays of high sizes. In order to reduce the
computational cost by exploiting 2D-FFT algorithm, a closed-
form solution to find the matrix R is proposed in the follow-
ing section.

3. PROPOSED COVARIANCE MATRIX DESIGN

Given anM ×N time domain matrix Ht, theM ×N fre-
quency domain matrix Hf can be easily generated. The rela-
tionship between the time domain coefficients Ht(m,n) and
the frequency domain coefficients Hf (k1, k2) is given by the
following 2D discrete-Fourier-transform (2D-DFT) formula

Hf (k1, k2) =

M−1∑
m=0

N−1∑
n=0

Ht(m,n) e
−j2πk1m/Me−j2πk2n/N .

(9)
Similarly, for given frequency domain coefficients, the time
domain coefficients are obtained with the 2D inverse discrete-
Fourier-transform (2D-IDFT) as follows

Ht(m,n) =
1

MN

M−1∑
k1=0

N−1∑
k2=0

Hf (k1, k2) e
j2πk1m/Mej2πk2n/N .

(10)
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Using (9) we obtain the following lemma

Lemma 1 Let Hf be an M × N matrix with real positive
frequency domain coefficients and define the vectors eM (k1)
and eN (k2) as

eM (k1) =
[
1 ej2πk1/M . . . ej2πk1(M−1)/M

]T
,

eN (k2) =
[
1 ej2πk2/N . . . ej2πk2(N−1)/N

]T
, (11)

where k1 = 0, 1, . . . ,M − 1 and k2 = 0, 1, . . . , N − 1. If we
construct a matrix Rhh as

Rhh =
1

(MN)2

M−1∑
k1=0

N−1∑
k2=0

Hf (k1, k2) e(k1, k2) e
H(k1, k2),

(12)
where e(k1, k2) = eN (k2)⊗ eM (k1), then Rhh will be pos-
itive semi-definite and all of its diagonal elements will be
equal. Moreover, the individual elements of Hf are related
to the entries of Rhh using the following quadratic form

Hf (l1, l2) = eH(l1, l2)Rhhe(l1, l2). (13)
Proof of lemma 1 is provided in [16]. Finding Rhh using
(12) can be computationally very expensive since it requires
the outer product of MN vectors and addition of MN matri-
ces. To reduce the computational complexity, using (12), the
individual elements of Rhh can be written as

Rhh(i1, i2) =
1

(MN)2

M−1∑
k1=0

N−1∑
k2=0

Hf (k1, k2)

×ej
2πk1〈i1−i2〉M

M ej
2πk2(bi1cM−bi2cM )

N , (14)

where i1, i2 = 0, 1, . . . ,MN − 1. Comparing (14) with (10),
we can write

Rhh(i1, i2) =
1

MN
Ht(〈i1 − i2〉M , bi1cM − bi2cM ).(15)

Since the matrix Rhh is positive semi-definite and all of its
diagonal elements are equal, it satisfies both the C1 and C2

constraints of the optimization problem in (8) for designing
the desired beampattern. Therefore, if Rhh is considered to
be the waveform covariance matrix, by comparing (6) with
(13), it can be easily seen that the problem of transmit beam-
pattern design can be mapped to the result obtained in the
Lemma 1. This transformation only requires the mapping of
the steering vector as(fx, fy) to e(k1, k2). This can be done
by mapping the values of fx and fy to k1 and k2 using the
following expressions{

fx 7→ −0.5 + k1
M−1 , k1 = 0 . . .M − 1

fy 7→ −0.5 + k2
N−1 , k2 = 0 . . . N − 1.

(16)

The three dimensional space can then be defined by a two di-
mensional grid

(
{(fx)(l)}Ml=1, {(fy)(k)}Nk=1

)
represented by

anM×N matrix Hf . Thus, the entryHf (m,n) corresponds
to fx = −0.5 + m

M−1 and fy = −0.5 + n
N−1 . In order to

define the ROI of the desired beampattern, we just have to as-
sign 1 to the entries of Hf which are inside the ROI and 0
everywhere else.

4. COMPUTATIONAL COMPLEXITY

The only computational complexity of the proposed
method comes from the IDFT computation step. The
NM IDFT coefficients are computed using one of the fa-
mous FFT algorithms which have a complexity equal to
O(MN log(MN)) operations. However, the SQP method
has a complexity of the orderO(log( 1η ) (MN)3.5) for a given
accuracy η [17]. As shown in Fig. 2, the gap of computa-
tional complexity between the FFT-based and SQP-based al-
gorithms increases with the number of antennas which makes
our method more suitable for real time radar applications.
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Fig. 2: Computational complexity comparison between the
FFT-based algorithm and the SQP method.

5. DIRECT DESIGN OF WAVEFORMS FOR THE
DESIRED BEAMPATTERN

In this section, a closed-form expression to directly design
the waveforms for the desired beampattern is proposed. We
start from (12), which can also be written as

R(i1, i2)=

M−1∑
k1=0

N−1∑
k2=0

(√
Hf (k1, k2)

MN
ej

2πk1〈i1〉M
M ej

2πk2bi1cM
N

)

×

(√
Hf (k1, k2)

MN
ej

2πk1〈i2〉M
M ej

2πk2bi2cM
N

)∗

. (17)

Choosing k = k1 +Mk2 = 〈k〉M +MbkcM , both terms in
the above equation can be considered as the kth elements of
the waveforms si1 and si2 that can be written as

si1(k) =

√
Hf (〈k〉M , bkcM )

MN
ej

2π〈k〉M 〈i1〉M
M ej

2πbkcM bi1cM
N ,

si2(k) =

√
Hf (〈k〉M , bkcM )

MN
ej

2π〈k〉M 〈i2〉M
M ej

2πbkcM bi2cM
N ,

where the time index k = 0, 1, . . . ,MN−1. Thus, the cross-
correlation between the waveforms {si1(k)} and {si2(k)} is
written as

R(i1, i2) =

MN−1∑
k=0

si1(k) si2(k)
∗. (18)
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The corresponding waveform vector can be written as

si =



√
Hf (0,0)

MN ej
2π(0)bicM

N ej
2π(0)〈i〉M

M

...√
Hf (0,N−1)

MN ej
2π(N−1)bicM

N ej
2π(0)〈i〉M

M

...

...√
Hf (M−1,0)

MN ej
2π(0)bicM

N ej
2π(M−1)〈i〉M

M

...√
Hf (M−1,N−1)

MN ej
2π(N−1)bicM

N ej
2π(M−1)〈i〉M

M



(19)

Therefore, for any transmitting element of the rectangular ar-
ray at location (m,n) where m = 0 . . .M − 1 and n =
0 . . . N − 1, we assign the waveform si defined in (19) with
i = m + nM . It should be noted here that depending on the
desired beampattern some elements of the waveform si may
be equal to zero. If Na is the number of non-zero elements in
the matrix Hf only Na < MN snapshots will be required to
achieve the desired beampattern.

6. NUMERICAL SIMULATIONS

In this section, the performance of the proposed FFT-
based algorithm is investigated. For simulation, a rectangular
planar array composed ofM×N antennas is considered. The
spacing between any two adjacent antennas on the x− and
y−axis of the planar-array is kept λ/2. The MSE between
the desired and designed beampatterns is defined as

MSE =

L∑
l=1

K∑
k=1

|aHs (fx(l), fy(k))Ras(fx(l), fy(k))

−αPd(fx(l), fy(k))|2/KL.

In the following simulation, the ROI is defined as −0.1 ≤
fx ≤ 0.1 and −0.1 ≤ fy ≤ 0.1 and we use N = M = 10.
To design this beampattern, we use our proposed closed-form
2D-FFT based algorithm. The corresponding designed beam-
pattern, using the covariance matrix R obtained by our al-
gorithm, is shown in Fig. 3. Note that the beampattern is
normalized by dividing α. The algorithm to directly design
the waveforms corresponding to this beampattern is proposed
in Sec. 5. In order to compare the performance of our algo-
rithm with the iterative SQP method, we compute the corre-
sponding MSE for different planar array dimensions and for
the ROI defined by −0.1 ≤ fx ≤ 0.1 and −0.1 ≤ fy ≤ 0.1.
The MSE of both methods with respect to the total number of
antennas MN is shown in Fig. 4. We note that for low num-
ber of antennas the performance of the FFT-based method is
affected. This is due to the fact that the ROI (represented
by the matrix Hf ) is constructed in the two dimensional grid

Fig. 3: The designed beampattern using the proposed FFT-
based algorithm. Here, the ROI is −0.1 ≤ fx ≤ 0.1 and
−0.1 ≤ fy ≤ 0.1 and M = N = 10.(
{(fk1)l}Ml=1, {(fk2)}Nk=1

)
whose resolution is related to the

number of antennas. However, as the dimensions of the rect-
angular array increase the proposed method achieves lower
MSE level approaching the SQP-based method with the ad-
vantage of being much less complex.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of antennas

M
S

E

 

 

FFT Based Method  
SQP Method

Fig. 4: MSE comparison between the FFT-based algorithm
and the SQP method for different planar array dimensions.

7. CONCLUSION

In this paper we have presented a closed-form method
of covariance matrix design for the planar MIMO transmit
beamforming problem that exploits the IDFT coefficients.
The positive semi-definition and uniform element power con-
straints are verified by the designed matrix. Next, a method
of direct waveform design exploiting the expression of the
covariance matrix that we found is proposed. The numeri-
cal simulations presented confirm that the proposed method
is computationally efficient and performs closely to the SQP-
based method as the number of antennas increases.
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