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ABSTRACT
The source localization problem for multiple-input, multiple-output
(MIMO) radars was recently formulated by Yu et al. [7] in the com-
pressive sensing (CS) framework. The resulting CS/MIMO radar
achieves high resolution in joint direction and Doppler estimation,
which is more pronounced with sparse data. However, the CS/MIMO
technology does not operate well in environments with multipath, as
is the case for low-angle targets located over flat surfaces. The paper
applies the principle of time reversal (TR) to the CS/MIMO radar to
converge the TR probing signal on the target leading to a stronger
backscatter from the target as compared to the ones received from
surrounding clutter. Monte Carlo simulations verify the superiority
of the CSTR/MIMO radar over its CS/MIMO version without TR.

Index Terms— Compressive sensing, Source localization, Di-
rection of arrival, Doppler estimation, MIMO radar, Time reversal.

1. INTRODUCTION

Unlike standard phased array radars, multiple-input multiple-output
(MIMO) radars [1]-[20] transmit simultaneous probing signals from
all elements of the MIMO array, which can be quite different from
each other. The resulting MIMO diversity is then exploited by the lo-
calization technology for a much superior system-wide performance.
Based on how the constituent arrays are configured, MIMO radars
are classified into two categories: (1) Multistatic MIMO radars with
spatially distributed transmit and receive elements designed to pro-
vide spatial diversity by viewing the target from different angles,
and; (2) Colocated MIMO radars with transmit and receive antennas
in close proximity to cohere a beam towards a certain direction in
space. The paper focuses on the colocated MIMO setup that takes
advantage of waveform diversity [19] to offer improvements in an-
gular resolution, enhanced parameter identifiability, and increased
flexibility in transmit/receive beampattern design. A major problem
with colocated MIMO radars is the large amount of data generated
at the receive elements due to the high sampling rate used to digitize
the backscatter observations from the target. This places consider-
able computational power, storage, and bandwidth requirements on
the MIMO system. The application of compressive sampling (CS)
to a colocated MIMO radar was recently investigated in [7], where
each receive node applies CS to its received signal to reduce the
number of recorded samples. Using the CS formulation, Poor et
al. [7] expressed the estimation of the parameters (e.g., direction of
arrival (DOA), and Doppler shift associated with L targets) from the
recorded (Ns × 1) signal vector x as the `1-optimization problem

min ‖s‖1 , such that (s.t.) rc = Φx = ΦΨs, (1)

where s is a sparse vector with K nonzero elements representing L
targets. CS makes use of the fact that the backscatter observation x

reflected from the targets is sparse in at least one domain. Expressed
in terms of the proper basis Ψ, x, therefore, has a concise repre-
sentation s. Referred to as the CS dictionary, the columns of Ψ are
called atoms and are typically orthogonal or near-orthogonal to each
other. The number of samples in x is further reduced by multiply-
ing x with a (Nc × Ns) random orthogonal compressive matrix Φ
that is incoherent with Ψ. The angle-Doppler estimation problem in
the CS/MIMO radar, therefore, uses CS, Eq. (1), to solve for the pa-
rameter vector s given sparse observations rc (with lengthNc�Ns)
from all receive elements available at the fusion center.

A necessary condition for the aforementioned CS approach is
channel sparsity, which is automatically satisfied when relative to
the number of available snapshots, the number of targets is small.
In channels with strong multipath, the number K of nonzero ele-
ments in s increases as each additional path introduces its own set of
unknown localization parameters. Multipath, therefore, has a detri-
mental effect on the performance of the CS/MIMO radar. In the best
case scenario, multipath increases the complexity of the CS step in
the CS/MIMO radar. In the worst case, there is a potential for the
sparsity condition to be violated even with few targets present. In our
previous work, we have applied the time-reversal (TR) principle to
multiple-scattering medium, where explicit modeling of the medium
is difficult due to its complexity or due to random perturbations.
In this paper, we couple TR to the CS/MIMO radar to propose the
compressive sensing, TR MIMO (CSTR/MIMO) radar that includes
an additional TR stage. In the CSTR/MIMO radar, the previously
recorded CS/MIMO backscatter is time reversed, energy normalized,
and retransmitted into the medium. As the process is repeated, the
TR signal becomes highly focused on the targets producing stronger
backscatter reflections from the targets compared to those from the
clutter. Consequently, the energy in the recorded backscatter is re-
distributed in favour of the reflections from the targets. To assess the
potential of applying TR, our simulations operate both radars with
12.5% of the raw samples using CS, i.e., Nc = 0.125Ns.

Section 2 formulates the signal model for the MIMO radar oper-
ating in strong multipath. In Section 3, the CS based approach for the
joint estimation of the Doppler shift, direction of departure (DOD),
and DOA in the CS/MIMO system (without TR) is presented. In
Section 4, we derive the signal model for the CSTR/MIMO radar
followed by its estimation algorithm in Section 5. The performance
of CSTR/MIMO and CS/MIMO radars is compared in Section 6 us-
ing Monte Carlo simulations. Finally, Section 7 concludes the paper.

2. MIMO SYSTEM FORMULATION IN MULTIPATH

Consider the MIMO radar with two sets of transceivers A and B.
A set of Nt transmit elements in transceiver A is used to probe the
channel, while a second set of Nr receive elements in transceiver B
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records the backscatter. All Nt transmit elements simultaneously
probe the channel with the probing signal fi(t)eωct, where fi(t)
is the baseband waveform associated with transmit element i, (1 ≤
i ≤ Nt), and ωc is the carrier frequency. The signal recorded at the
receive elements is the accumulative backscatter from L targets and
(Mf − L) scatterers representing clutter. In the forward direction,
the signal incident on scatterer mf , (1 ≤ mf ≤Mf ), is given by

smf (t) =

Nt∑
i=1

αmf fi
(
t− τ(i,mf )(t)

)
e
ωc

(
t−τ(i,mf )(t)

)
, (2)

where αmf , τ(i,mf ) and θmf are, respectively, the attenuation, de-
lay, and direction of departure (DOD) associated with the forward
path to scatterer mf . Expressed in terms of the reference delay
τmf (0) between the reference transmit element and scatterer mf ,
delay τ(i,mf ) for transmit element i is expressed as

τ(i,mf )(t) = τmf (0) +
vmf

c
t+ τi(θmf ), (3)

where vmf is the relative velocity of scatterer mf , c is the wave
propagation speed, and τi(θmf ) = di sin(θmf )/c is the delay asso-
ciated with scatterer mf in addition to τmf (0), which depends upon
interelement spacing di between transmit element i and reference
element. The observation at receive element j, (1 ≤ j ≤ Nr), is the
accumulation of the line-of-sight backscatters from all scatterers as
well as the backscatters reaching the receive element after multiple
reflections between different scatterers. With a total of Mb paths in
the back propagation model, the observation at receive element j is
given by

rj(t) =

Mb∑
mb=1

αmb

Mf∑
mf=1

smf

(
t− τ(j,mb)(t)

)
+ n′′j (t), (4)

where n′′j (t) is the observation noise , αmb is the attenuation for
backward path mb. As for the forward path, the delay τ(j,mb)(t) for
backward path mb is given by

τ(j,mb)(t) = τmb(0) +
vmb

c
t+ τj(θmb), (5)

where τmb(0), vmb , and τi(θmb) are range delay, velocity, and di-
rection DOA for backward path mb with respect tot the reference
element in the receive array. The DOA τj(θmb) = dj sin(θmb)/c,
where dj the distance between receive element j and reference ele-
ment in array B. Substituting smf (t) from Eq. (2) in Eq. (4) yields

rj(t) =

Nt∑
i

Mb∑
mb

Mf∑
mf

αmfαmbe
ωc

(
t−

(
τ(i,mf )(t)+τ(j,mb)

(t)
))

(6)

×fi
(
t−

(
τ(i,mf )(t) + τ(j,mb)(t)

))
+ n′′j (t).

Demodulating (6) and considering fi(t) as a narrowband probe gives

rj(t) =

Nt∑
i

Mb∑
mb

Mf∑
mf

αmfαmbfi(t)e
−ωc

(
τ(i,mf )(t)+τ(j,mb)

(t)
)

+ n′j(t), (7)

where n′j(t) is an additive white Gaussian noise with the PSD of σ′2j .
Inserting Eq. (3) and Eq. (5) into Eq. (7) yields

rj(t) =

Nt∑
i

Mb∑
mb

Mf∑
mf

(
αmfαmbe

−ωc

(
τmf

(0)+τmb
(0)

))
× (8)

e
−ωc

(
βmf

+βmb

)
t · e−ωc

(
τi(θmf

)+τj(θmb
)
)
fi(t) + n′j(t),

where βmf =−ωcvmf /c and βmf =−ωcvmb/c are forward and
backward Doppler shifts, respectively. By combining the forward
and backward propagation paths into (1 ≤ l = (mf ,mb) ≤ L)
complete paths between the transmit and receive elements, Eq. (8) is
expressed in the vector-matrix format as

rj(t) =

L∑
l=1

αld(t, βl)f
T (t)v(j, τ(θl)) + n′j(t), (9)

where

αl=αmfαmbe
−ωc(τmf

(0)+τmb
(0))
, d(t, βl)=e

−ωc(βmf
+βmb

)t
,

θl=
(
θmf , θmb

)
, βl=βmf + βmb , f(t)=[f1(t), · · · , fN (t)]T,

and v(j, τ(θl)) =
[
e
−ωc

(
τ1(θmf

)+τj(θmb
)
)
, · · · ,

e
−ωc

(
τNt

(θmf
)+τj(θmb

)
)]T
,

where T as superscript denotes the transcript operator. In MIMO
radars, the probing signals {fi(t)} typically consist of a sequence of
pulses with a constant pulse repetition interval (PRI). For a total of
Np pulses with the PRI of Tp, sampling period denoted by Ts, and
number of samples in each pulse, (1 ≤ p ≤ Np), given by Ns, the
response to pulse p in Eq. (9) is discretized and given by

r(j,p)=[rj((p−1)T+0Ts),· · ·,rj((p−1)T+(Ns−1)Ts)]T (10)

=

L∑
l=1

αld((p− 1)T, βl)D(βl)F(t)v(j, τ(θl)) + n′(j,p),

where D(βl) = diag
{[
e−ωcβl(0)Ts , · · · , e−ωcβl(Ns−1)Ts

]}
,

F(t) = [f(0Ts), · · · , f((Ns − 1)Ts)]
T ,

and n′(j,p) =
[
n′j((p− 1)T + (0)Ts), · · · ,

n′j((p− 1)T + (Ns − 1)Ts)
]T
.

In the following derivation, the DOD and DOA are treated separately
as given by θl = (θmf , θmb), while the Doppler shifts associated
with the forward and backward signal propagations {βmf , βmb} for
the same target are added together and treated as one variable βl as
is customary in array processing.

3. THE CS/MIMO RADAR

Following [7], we discretize the channel into an angle-Doppler plane
with L′ cells as a = [(θ1, β1), · · · , (θL′ , βL′)] and define a dictio-
nary for transceiver j and pulse p as

Ψ
(C)
(j,p)(a) , [d((p− 1)T, β1)D(β1)F(t)v(j, τ(θ1)), · · · , (11)

d((p− 1)T, βL′)D(βL′)F(t)v(j, τ(θL′))] .

Considering the received signal at the jth transceiver in Eq. (10) and
the dictionary defined in Eq. (11), we construct a vector of unknowns
s
(C)
(j,p) = [α1, · · · , αL′ ]T . In terms of s

(C)
(j,p), Eq. (10) is expressed in

the matrix-vector format as

r(j,p) = Ψ
(C)
(j,p)(a)s

(C)
(j,p) + n′(j,p). (12)

The compressed version of r(j,p) is produced by multiplying it with
a (Nc × Ns) zero-mean Gaussian matrix Φ

(C)
(j,p), with (Nc < Ns),

and is given by

rc(j,p) = Φ
(C)
(j,p)Ψ

(C)
(j,p)(a)s

(C)
(j,p) + n(j,p), (13)
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with n(j,p) the downsampled version of noise n′(j,p) to keep it con-
sistent in dimensions with rc(j,p). At the fusion center, combining
all pulses from all Nr receive elements gives

rc =
[
rTc(1,1), · · · , rTc(1,Np), · · · , r

T
c(Nr,1), · · · , r

T
c(Nr,Np)

]T
(14)

= Θ(C)
rc s(C) + n̂,

where Θ(C)
rc =

[(
Φ

(C)
(1,1)Ψ

(C)
(1,1)

)T
, · · · ,

(
Φ

(C)
(1,Np)

Ψ
(C)
(1,Np)

)T
,

· · ·,
(
Φ

(C)
(Nr,1)

Ψ
(C)
(Nr,1)

)T
, · · ·,

(
Φ

(C)
(Nr,Np)

Ψ
(C)
(Nr,Np)

)T ]T
and n̂ =

[(
Φ

(C)
(1,1)n

′
(1,1)

)T
, · · · ,

(
Φ

(C)
(1,Np)

n′(1,Np)

)T
,

· · ·,
(
Φ

(C)
(Nr,1)

n′(Nr,1)

)T
, · · · ,

(
Φ

(C)
(Nr,Np)

n′(Nr,Np)

)T ]T
.

The fusion center recovers s(C) in Eq. (14) using the Dantzig selector
[21] given below

ŝ(C) = min
∥∥∥s(C)

∥∥∥
1

s.t.
∥∥∥(Θ(C)

rc )H(rc −Θ(C)
rc s(C))

∥∥∥
∞
< µ(C). (15)

To ensure that the columns of the sensing matrix Θrc are approxi-
mately orthogonal, a high number {Nt, Nr} of transceiver elements
and a high number of pulses Np are needed. Further, the value of
µ(C) depends on the maximum norm for the columns of the sens-
ing matrix Θ

(C)
rc and variance of noise n̂. In [7], authors suggest

µ(C) <
∥∥∥(Θ(C)

rc )Hrc

∥∥∥
∞

.

4. TR MIMO RADAR FORMULATION IN MULTIPATH

In TR, [22]-[32] all receive elements time reverse, normalize their
observations by factor gj =

√
‖F‖2 / ‖rj‖2 and retransmit the re-

sulting signals into the channel. The TR observation [31] made at
transmit element k, (1 ≤ k ≤ Nr), is given by

zk(t) =

Nr∑
j

gj

Nt∑
i

M′
b∑

m′
b

M′
f∑

m′
f

Mb∑
mb

Mf∑
mf

(

A︷ ︸︸ ︷
αm′

f
αm′

b
αmfαmb) (16)

×e
−ωc(

B︷ ︸︸ ︷
τm′

f
(0) + τm′

b
(0)+τmf

(0)+τmb
(0))

×e
−ωc(

C︷ ︸︸ ︷
βm′

f
+ βm′

b
+βmf

+βmb
)(−t)

×e
−ωc(

D︷ ︸︸ ︷
τk(θm′

f
) + τj(θm′

b
)+τi(θmf

)+τj(θmb
))
fi(−t)

+A · e−ωcB · e−ωcC(−t) · e−ωcD · n′j(−t) + e′k(−t),

where {m′f ,m′b} are, respectively, the forward and backward paths
for the TR step, terms {A,B,C,D} are attenuation, range, Doppler
shift, and DOD/DOA expressions for TR (which are similar in na-
ture to their conventional MIMO counterparts), and e′k(t) is addi-
tive noise. Reference [31] shows that the term ek(−t) defined as
ek(−t) = A exp(−ωcB) exp(−ωcC(−t)) exp(−ωcD)n′j(−t)
+e′k(−t) closely models white Gaussian noise under minor con-
straints. Further, the summation term in Eq. (16) can be reorga-
nized as a combination of two components. For the first component,

m′f = mf and m′b = mb, where the conventional MIMO signal
and TR signal propagate using the same path. For the second com-
ponent,m′f 6= mf or/andm′b 6= mb, where the TR and conventional
MIMO signals propagate via different paths. By exploiting the super-
resolution focusing of TR, Reference [31] shows that the first com-
ponent (m′f = mf and m′b = mb), is predominant over the second
component. Ignoring the second component, (16) simplifies to

zk(t) =

Nr∑
j

gj

Nt∑
i

L∑
l

α
(TR)
l e−ωc2βl(−t) (17)

e−ωc(τk(θl)+2τj(θl)+τi(θl))fi(−t) + e′k(−t),

where α(TR)
l = |αmf

|2|αmb
|2e−ωc2

(
τmf

(0)+τmb
(0)

)
. As for the

conventional MIMO radar, the TR observation (17) is discretized
and expressed in terms of pulses p, (1 ≤ p ≤ Np), constituting
fi(t) in the vector-matrix format as

z(k,p)=[zk((p−1)T + 0Ts),· · ·, zk((p− 1)T+(Ns − 1)Ts)]
T (18)

=

L∑
l

α
(TR)
l d((p− 1)T, 2βl)D(2βl)F(−t)A(θl)g + e′k,p(−t),

where A(θl) =

 e−ωcτ(1,1,θl) · · · e−ωcτ(1,Nr,θl)

...
. . .

...
e−ωcτ(Nt,1,θl) · · · e−ωcτ(Nt,Nr,θl)

 ,
τ(j, i,θl) = τk(θl) + 2τj(θl) + τi(θl), and g = [g1, · · · , gNr ]

T.

Noise vector e′k,p(−t) collects noise samples e′k(−t) for pulse p as
was the case for the MIMO radar in Eq. (10).

5. THE CSTR/MIMO RADAR

The derivation of the Dantzig selector for the CSTR/MIMO radar
follows the steps used for the CS/MIMO radar. Discretizing the
channel into L′ cells, the TR dictionary is given by

Ψ
(TR)
(k,p)(a) , [d((p− 1)T, 2β1)D(2β1)F(−t)A(θ1)g, (19)

· · · , d((p− 1)T, 2βL′)D(2βL′)F(−t)A(θL′)g] .

Using the dictionary Ψ
(TR)
(k,p)(a) and the vector of unknowns s

(TR)
(j,p) =

[α
(TR)
1 , · · · , α(TR)

L′ ], Eq. (18) is given by

z(k,p) = Ψ
(TR)
(k,p)(a)s

(TR)
(k,p) + e′(k,p) (20)

Compressing with the (Nc×Ns) Gaussian matrix Φ
(TR)
(k,p) gives

zc(k,p) = Φ
(TR)
(k,p)Ψ

(TR)
(k,p)(a)s

(TR)
(k,p) + e(k,p), (21)

where e(k,p) is the compressed version of e′(k,p). Organizing all TR
signals in the fusion center, we get

zc=
[
zTc(1,1), · · · , zTc(1,Np), · · · , z

T
c(Nt,1), · · · , z

T
c(Nt,Np)

]T
(22)

= Θ(TR)
zc s(TR) + ê,

where

Θ(TR)
zc =

[(
Φ

(TR)
(1,1)Ψ

(TR)
(1,1)

)T· · ·, (Φ(TR)
(1,Np)

Ψ
(TR)
(1,Np)

)T
, · · ·,(

Φ
(TR)
(Nt,1)

Ψ
(TR)
(Nt,1)

)T
, · · ·,

(
Φ

(TR)
(Nt,Np)

Ψ
(TR)
(Nt,Np)

)T ]T
,

and ê =
[(

Φ
(TR)
(1,1)e(1,1)

)T
, · · · ,

(
Φ

(TR)
(1,Np)

e(1,Np)

)T
, · · · ,(

Φ
(TR)
(Nt,1)

e(Nt,1)

)T
, · · · ,

(
Φ

(TR)
(Nt,Np)

e(Nt,Np)

)T ]T
.
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Fig. 1: Comparison between the CS/MIMO and CSTR/MIMO radars: (a)-(c) RMSE plots for the DOA (subplot (a)), DOD (subplot (b)), and Doppler shift
(subplot (c)), and; (d)-(f) Error histograms at 5dB SNR for the CSTR/MIMO radar (top subplots) and CS/MIMO radar (bottom subplots). The CS/MIMO error
spreads are wider in the DOA (subplot (d)), DOD (subplot (e)), and Doppler (subplot (f)) estimates.

As for the TR/MIMO radar, the fusion center in the CSTR/ MIMO
radar recovers s(TR) in (22) using the Dantzig selector

ŝ(TR) = min
∥∥∥s(TR)

∥∥∥
1

s.t.
∥∥∥(Θ(TR)

zc )H(zc −Θ(TR)
zc s(TR))

∥∥∥
∞
<µ(TR), (23)

with µ(TR) < ‖(Θ(TR)
zc )Hzc‖∞. The selector recovers s(TR) with

high probability if Nc ≥ Lξ2(logL′)4/C, where ξ is the maximum
mutual coherence between two columns of Θ

(TR)
zc and C is a constant.

Remarks: The paper focuses on the potential of applying TR to
the CS/MIMO radar in rich multipath environments, therefore, the
CSTR/MIMO vector z(k,p) and its CS/MIMO counterpart r(k,p) are
each compressed by 12.5%. In other words, the length of zc(k,p)
(and rc(k,p)) is one eighth (1/8) the length of z(k,p) (and r(k,p)),
respectively. The refocusing of the signal on the targets attributed to
the TR super-resolution focusing phenomena leads us to the belief
that the CSTR/MIMO radar will fare better than the TR/MIMO radar
in multipath environments. Next, we demonstrate the improved per-
formance of the CSTR/MIMO radar using Monte Carlo simulations.

6. NUMERICAL SIMULATIONS

Table 1 list the values of parameters used in our simulations. The
inter-element spacing in the two transducer arrays {A,B} of trans-
ducers is non-uniform to minimize the mutual coherence between
the two columns of the sensing matrices Θrc and Θzc [17]. For the
same reason, the probing signal F is chosen to be a random BPSK
matrix with orthogonal columns. Our setup consists of a single tar-
get and six clutter scatterers distributed at random, i.e, L = 7. To
quantify the performance of both the CS/MIMO and CSTR/MIMO
radars, we ran Monte Carlo (MC) simulations for different SNRs
ranging from −10dB to 10dB. Each MC simulation comprised 400
runs. The root mean square error (RMSE) plots for the CS/MIMO
and CSTR/MIMO radars are plotted in Fig. 1(a), (b), and (c), re-
spectively, for the DOA, DOD, and Doppler shift. In all three RMSE

Table 1: Parameters used in the Monte Carlo simulations.
Parameter Value Comment
Nt, Nr 24 Number of transmit/receive elements
Ns 512 Number of samples
Nc 64 Number of compressed samples
Np 20 Number of pulses/sec
ωc 2π × 5× 109 rad/s Carrier frequency
F (Ns ×Nt) Random BPSK probing signal
vmf =vmb (300, · · · , 400)m/s Velocity of forward/backwards paths

with 10m/s resolution
θmf =θmb (−7◦, · · · , 7◦) DOD & DOA with 0.5◦ resolution
L′ 9251 Number of dictionary atoms
L 7 Number of scatterers

plots, the CS/MIMO radar has lower errors. Figs. 1(d), (e), and
(f), respectively, plot the error histograms for the DOA, DOD, and
Doppler shift resulting from the CSTR/MIMO radar (top subplots)
and CS/MIMO radar (bottom subplots). The error spreads for the
CS/MIMO radar are wider than those for the CSTR/MIMO radar
verifying the superiority of the CSTR/MIMO radar.

7. CONCLUSION AND FUTURE WORKS

The paper incorporates the TR principle in the CS/MIMO radar, in-
troduced previously in [7], for joint estimation of the DOA, DOD,
and Doppler information on potential targets embedded in highly
cluttered environments. The proposed CSTR/MIMO radar uses mul-
tipath constructively to focus the TR probing signals on to the tar-
gets. The CSTR/MIMO system outperforms the CS/MIMO system
in our Monte Carlo simulations of a surveillance environment with
a single airborne target and six scatterers introducing multipath at
SNRs ranging from −10dB to 10dB. In future, we will focus on the
compressibility aspects of CS in the CSTR/MIMO radars.
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