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ABSTRACT

In this paper, space-delay adaptive processing (SDAP) is
proposed for motion mapping using MIMO RF signals. Typi-
cally, indoor RF localization methods require ultra-wideband
signals to achieve the time-delay resolution required for sep-
aration of returns in complex multipath environments. Due
to spectrum use restrictions, however, there is a need for
methods which can operate using the lower bandwidths allo-
cated for so-called ISM use. In this paper, we develop SDAP
methods for linear MIMO transmit-receive arrays which can
achieve near ultra-wideband range resolution and multipath
sidelobe suppression but which use significantly less band-
width. Real data results for indoor motion monitoring are
presented aimed at mapping patient repositioning activities in
long-term care facilities for pressure ulcer prevention.

Index Terms— MIMO, wide-area, motion monitoring,
indoor multipath, bandwidth

1. INTRODUCTION

Wide-area RF-based indoor motion monitoring requires the
ability to separate overlapping Doppler characteristics of mul-
tiple targets and analyze each target’s motion based on its
micro-Doppler signature. In [1], a sensor array transmitting
wideband waveform was used to resolve the Doppler signa-
ture at a specific location by separately processing the fast-
time samples and array wavefronts, known as ranging and
beamforming. In [2], an ultra-wideband MIMO system was
used for mitigating ghost motion returns due to indoor mul-
tipath scattering. However, conventional non-adaptive meth-
ods for ranging and beamforming degrade dramatically when
signal bandwidth is more limited. Some range resolution im-
provement can be achieved by trading sidelobe level for main-
lobe width, however, high sidelobe levels result in motion
mapping artifacts which are easily confused with weaker tar-
gets in indoor environments.

While adaptive delay (i.e. fast-time samples) and spatial
array processing can be applied sequentially to resolve slow-
time sequences for micro-Doppler estimation from multiple
targets, this separable processing is sub-optimal in multipath
environments because of the complex coupling between sig-
nal time-delay and direction. In this paper, therefore, joint
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space-delay adaptive processing (SDAP) is presented. Fur-
thermore, a reduced-rank solution for SDAP is derived, which
is shown to outperform both non-adaptive and separate adap-
tive methods for real data.

1.1. Relation to Prior Work

The proposed method is related to space-time adaptive pro-
cessing (STAP) [3], which jointly processes the slow-time
samples and spatial array outputs to suppress non-separable
clutter returns. Previous work for indoor motion monitoring
used ultra-wideband signals to resolve and suppress multi-
path ambiguities [2, 4-6]. In this work, adaptive fast-time
and spatial filtering are performed simultaneously to compen-
sate for limited bandwidth. Slow-time samples of space-delay
snapshots are used to estimate adaptive MIMO filter weights
which permit discrimination of both direction-of-departure
(DOD) and direction-of-arrival (DOA) for mitigating indoor
multipath returns.

2. SPACE-DELAY SIGNAL MODEL

Consider a MIMO RF illuminator transmitting a sequence of
M linear frequency modulated (LFM) chirps. Assume K
transmit elements and N receive elements in the system. The
waveform center frequency is f. and bandwidth is B. As-
suming L samples in each chirp, the returned signal is then a
L x M x N x K hypercube. Let (I, m, n, k) denote signal
at [-th fast-time sample, m-th pulse (slow-time sample), n-th
receive element and k-th transmit element. In indoor environ-
ments, the total return is consisting of direct-path signals z,
multipath returns z,,, clutter return . and noise .,

z(l,m,n, k) = Z zt(l,m,n, k) + Z x;(l,m,n,k)
i€T, i€T,

+ xc(l’m7 n7 k) + ':Z:E(l7m7n7 k:) (1)

where Z, and Z,, are index sets of direct-path and multipath
returns, respectively. Let 7(m,n, k) denote the time-delay
from k-th transmit element to a far-field point target and back
to n-th receive element at m-th pulse. The returned signal
after de-chirp processing is given by

21, m,n, k) oc e PRI T(man k) j=g2n(fom§)(man k) (o)
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where T, and T are the pulse repetition interval and sam-
pling interval. The time-delay 7(m, n, k) is consisting of the
group delay 7(m) between the phase center of the transmit-
receive arrays and the relative phase delay between transmit
and receive elements 7(n, k). The phase delay can be further
decomposed into receive array delay 7,.(n) and transmit array
delay 7:(k),

T(m,n, k) = 7(m) + 7(n, k)
7(m) + 7 (n) + 7e(k) 3)

Assume a sufficiently narrowband waveform, the signal given
in (2) can be rewritten in terms of 7(m), 7,-(n) and 7 (k) as
2(17 m,n, k) x e—j2ﬂ'%7’del e*jQﬂ'fC'F(m)
o—d2mfeFr(n) y—i2mferi(k) @)

In (4), it is assumed that the group delay is much larger than
the phase delay, and can be modeled as a constant in each
coherent processing interval (CPI) for range processing, i.e.
T(m) =~ 14 > 7(n, k). This assumption is valid when the
target is in the far-field and the waveform is sufficiently nar-
rowband. The signal snapshot for SDAP is defined as

z(m) =[2(1,m,1,1) 2(1,m,1,2)
z(1,m,2,1) z(1,m,2,2)
z(2,m,1,1) z(2,m,1,2)

z(1,m,1,K)
z2(1,m, N, K)
2(L,m,N,K)]" (5

The snapshot given in (5) is a LN K x 1 vector, which is
proportional to the Kronecker product of the fast-time vector
v, receive array vector v,. and transmit array vector vy,

z(m) o e 12T v (1) @ v, (br) @ Vildy)  (6)

The fast-time vector of return from a point target is a complex
exponential with a frequency proportional to the delay 74,
—j2n By Ts1 —jon By ]
Vd(Td): e J T, Tdts . e J T, Td+ts (7)
If both the receive and transmit arrays are uniform linear ar-
rays, the array vectors are complex exponentials with frequen-
cies as functions of ¢,. and ¢,

T
—q E 31 —q E <1
v ( fr) [6 j2m4&d, sin ¢, 1 . e j2m2&d, sin ¢ N }

vi(dr) = [e—ﬂw%dt singel . p—i2mitdising K }T 8)
where ¢, and ¢, are the DOA and DOD of the signal, d,- and
dy are the inter-element spacing of the receive and transmit
arrays. The model given in (1) can be rewritten in terms of
SDAP snapshots as

x(m) = Y % m) + 37 x5 (m) + xe(m) + xc(m) ()

€L 1€,

The direct-path signal x(m) is the line-of-sight (LOS) return
from point scatterers, which has identical DOD and DOA,

xs(m) = ag 77T vy (7) @ v (6) @ vi(¢)  (10)

Different from direct-path signals, the multipath return x,,(m)
can have arbitrary DOD and DOA,

x,(m) = ap, e 72T (M) v (1)) @ v (hr) @ vi(dr) (11)

For fixed transmit and receive systems, backscatter from walls
and floors is at zero-Doppler thus can be removed by highpass
filtering the slow-time sequence. With the clutter removed,
the goal of motion mapping is to estimate the power in the
slow-time sequence as a function of range (delay) and direc-
tion for LOS targets while mitigating ambiguities due to mul-
tipath scattering and space-delay filter sidelobes.

3. SPACE-DELAY ADAPTIVE PROCESSING

In this section, space-delay adaptive processing (SDAP) is
discussed assuming the zero-Doppler clutter return has been
removed by highpass filtering x(m) over m. After clutter re-
moval, denote the clutter-free snapshot as y(m). The optimal
SDAP filter weights are obtained by minimizing the expected
power of filter outputs for interference, thus are given by

Wopr = Ry, 'v (12)

where R, is the covariance matrix of non-target signal com-
ponents and v is the target signal vector, which is the space-
delay snapshot given in (5) at a specific delay and direction,

v =vg(7) @ v, (0) @ v¢(6) (13)

For motion mapping, non-target signal components, i.e. inter-
ferences, include direct-path returns from other targets as well
as multipath returns and noise. Since the measured data snap-
shot given in (9) contains direct-path and multipath returns
from all locations, the “target-free” covariance matrix R, is
unavailable. Therefore, the data covariance matrix R, is used
and the minimum variance distortionless response (MVDR)
weights are obtained by solving the constrained optimization
problem [7],

min WHRyW st.whv =1 (14)
w
and the solution is given by
R;lv (15)
W. vdr — — T
mudr VHRglv

3.1. A Reduced-Rank Solution

The optimal solution given in (15) requires the inverse of a
covariance matrix with size LNK x LNK. Moreover, a
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huge number of training snapshots are required to estimate
the covariance matrix. In practice, reduced number of train-
ing snapshots, lower computation complexity and improved
robustness of the adaptive filter can be achieved by reducing
the degree of freedom (DOF) of the filter weights. In general,
assume a low-rank weight vector solution given by

Wsor = Uwy, (16)

where U is a LNK x D matrix with orthonormal columns
and wy, is a D x 1 weight vector. The optimization problem
in (14) can be rewritten as

W HTTH
min w;,, U"R,Uwy,

Wir

st.wilUfly =1 17)

and the low-rank MVDR solution is given by

U (UHR,U) ' UHy
vHU (UHR,U) ' Uty

(18)

Wsol =

The approach to choose U is an extension of beamspace
beamforming [7]. Let v (7o, 0) = v4(70) ® v (6p) @ v¢(6o)
denote the target signal vector at a particular delay 79 and
direction #y. A few delays and directions around 7 and 6
are chosen, and the corresponding signal vectors are stacked
to form a projection matrix V given by

V =[v(r_p,0_p) --- v(rp,0_p) --- v(Tp,0p)] (19)

Projecting data snapshot y(m) into the subspace spanned by
V is essentially performing non-adaptive ranging and beam-
forming for a set of delays and directions around target loca-
tion. Let uy, us, - - - , up denote the D singular vectors of V
with largest singular values. The matrix U is obtained as

U=[u; us --- up] (20)

The choice of V projects the original high-dimensional data
into a low-dimensional space while reserving most of the sig-
nal power. The choice of U further reduces the dimension-
ality and ensures orthonormality. Finally, the slow-time se-
quence at a specific delay 7 and direction 6 is given by

bro(m) = wlfy y(m) 1)

where w is obtained by (18), and R, is estimated using the
snapshots over slow-time pulses [8],

M

~ 1
Ry =7 y(m)y(m)" (22)
m=1

4. EXPERIMENTAL RESULTS

To evaluate the proposed method for wide-area indoor mo-
tion monitoring, real data experiments are conducted in the
Michael W. Krzyzewski Human Performance Lab (K-Lab) at
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Fig. 1. MIMO RF illuminator and the lab scene.

Duke University. The experimental set-up is shown in Fig. 1.
The RF transmit-receive system in the foreground has 4 trans-
mit elements and 16 receive elements, operating in the 2.4
GHz ISM band with a bandwidth of 150 MHz. The proposed
method is developed for monitoring the motions of multiple
long-term care patients in an indoor environment. In this ex-
periment, the examining table in Fig. 1 was used as a sur-
rogate patient bed which was shifted to different locations at
which RF returns are measured. Measurements at multiple lo-
cations are summed to synthesize a multiple-target scenario.
The main challenge of indoor motion monitoring is to detect
motion locations in each CPI in the presence of multipath ar-
tifacts and sidelobes. This paper thus focuses on accurate mo-
tion mapping using limited bandwidth rather than classifying
motions based on the micro-Doppler signature.

To compare different processing methods, the power of
the slow-time sequence given in (21) is plotted as a function
of range and direction, which are shown in Fig. 2 to Fig. 6.
For all maps, the truth is that there are two motions happen-
ing at 3 m and 5 m in range, respectively. Fig. 2 is the motion
map obtained using ultra-wide bandwidth RF measurements,
processed by conventional ranging and MIMO beamforming.
The high-level sidelobes are not observable in the map since
they are close to the mainlobe thus overlapped with the tar-
get. Fig. 3 to Fig. 6 are the motion maps obtained using 150
MHz bandwidth RF measurements. Fig. 2 is regarded as the
ground truth for Fig. 3 to Fig. 6. It is shown in Fig. 3 that
motion mapping ambiguities appear due to filter sidelobes.
Hamming windowing is applied for suppressing the sidelobes
and the corresponding motion map is shown in Fig. 4. Al-
though sidelobe levels are suppressed, the enlarged mainlobe
degrades the resolution and creates mapping ambiguities due
to the fixed filter response pattern.

Fig. 5 shows the motion map obtained by applying adap-
tive ranging and adaptive beamforming separately. This
method successfully mitigates the sidelobe ambiguities.
However, the separate adaptive filter designs a filter response
pattern that is separable in range and direction, thus is sub-
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Fig. 2. Non-adaptive processing, 600 MHz bandwidth.
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Fig. 3. Non-adaptive processing, 150 MHz bandwidth.
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Fig. 4. Hamming window processing, 150 MHz bandwidth.

optimal for suppressing non-separable returns. In indoor
environments, moving targets generate direct-path returns
as well as multipath returns due to local scattering. Unlike
point targets, the real target return typically spreads in range
and direction. As a result, the separate filter squeezes its
mainlobe to suppress interferences which are closely located
to the target location, thus amplifying the background noise
at other locations. In contrast, the SDAP filter operates in
a high-dimensional space where the returns from different
targets are well-separated thus can be suppressed using a few
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Fig. 5. Separate adaptive processing, 150 MHz bandwidth.
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Fig. 6. Joint adaptive processing, 150 MHz bandwidth.

DOF. The motion map obtained using SDAP is shown in Fig.
6, which outperforms the non-adaptive and separate adaptive
methods.

5. CONCLUSION AND FUTURE WORK

In this paper, fast-time samples and spatial array outputs are
jointly processed to resolve the slow-time sequence at LOS
locations in a wide-area indoor multipath environment. The
proposed method successfully mitigates mapping ambiguities
due to multipath and sidelobes with limited signal bandwidth.
Although the 150 MHz bandwidth used here is wider than the
2.4 GHz ISM band, it matches the ISM band from 5.725 to
5.875 GHz. Future work includes developing indoor motion
monitoring methods using distributed RF sensors.
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