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ABSTRACT

In a companion paper we have investigated the applicability
of aperiodic noise-like waveforms with a “thumb-tack” ambi-
guity function processed using mismatched compression fil-
ters for strong clutter rejection. In this paper we investigate
the role of the same principle in mode-selective MIMO OTHR
applications. It has been recently demonstrated that periodic
waveforms currently used in HF-OTHR for efficient ground
clutter mitigation have very limited scope for MIMO radar ap-
plications. This is due to the fact that the sidelobe-free area in
the appropriate MIMO ambiguity function isK times smaller
than for a single periodic waveform, where K is the number
of MIMO waveforms.

Index Terms— HF radar, OTHR, waveforms, mis-match
filtering, aperiodic, MIMO

1. INTRODUCTION

In previous studies on the principles of MIMO HF-OTHR
mode-selective operations [1, 2, 3] we considered matched
processing of K orthogonal waveforms capable of strong
ground clutter mitigation. Since the required sub-clutter vis-
ibility (SCV) even for “normal” clutter (i.e. not “spread” in
Doppler frequency) is much higher than the time-bandwidth
product (compression gain) of any available waveform, pe-
riodic waveforms such as LFMCW have been considered
[1, 2, 3]. Each of such waveforms has the maximal (prac-
tically) “sidelobe-free” area around the main peak of the
auto-ambiguity function [4] equal to four, that allows for
unambiguous SIMO target detection anywhere within the
“unambiguous” search area

A1 ∈
{
τmax − τmin = ∆τ
fmax − fmin = ∆f

(1)

when
∆τ∆f ≤ 1 (2)

and all clutter scatterers and targets are confined within this
area.

In [1, 2, 3, 5], we demonstrated that for MIMO oper-
ations with K “orthogonal” waveforms, similar conditions
for “sidelobe-free” area for all K auto-ambiguity functions
χjj , j = 1, . . . ,K and all cross-ambiguity functions χkj ,
k, j = 1, . . . ,K and k 6= j may hold only within K-times
smaller “range-Doppler” area.

∆τ∆f ≤ 1/K (3)

Even for SIMO operations, traditional limitations equa-
tion (2), already introduce problems for fast target detection
within the required range search area, and the quite dramatic
reduction of the sidelobe-free area represented by equation (3)
significantly limits the scope of practical MIMO applications.
In fact, most practically considered scenarios are limited to
slow-moving (surface) targets [1, 3, 6].

Note, that the “range-Doppler” area actually occupied by
“normal” clutter, propagated via the same ionospheric layers
as “wanted” target returns, is not that great. According to [7],
from resolution cells on the ground located at ranges greater
than 8000 nautical miles (nm), one gets little, if any, backscat-
tered energy. Since “normal” clutter that propagates via an
unperturbed ionospheric layer has Doppler spectrum with
bandwidth rarely exceeding 2Hz, the actual “range-Doppler”
area occupied by (multi-hop) clutter returns does not exceed
[8].

τ cmax∆fc ≤ 0.2 (4)

However, if the search area for a target is limited by, say,
500nm, and the maximal target Doppler frequency can reach
no more than 31Hz, then

τt∆ft = 1 (5)

which means that dimensions of “sidelobe-free” “range-
Doppler” area within this approach is dominated by a large
search area requirement, rather than by the actual dimension
of the range-Doppler space occupied by clutter.

In our companion paper [8], we suggested an approach
for SIMO operations, that can provide practically unlimited
search area for actual clutter (A) confined in “range-Doppler”
space. Specifically, we demonstrated that noise-like wave-
forms with the “thumb-tack”-like ambiguity function and
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compression gains equal to those currently used in air-mode
OTH radar operational waveforms (BW=8–25kHz, TCIT=2–
4s), are capable of providing the required high-level SCV
support (>70dB), when an appropriately designed mismatch
filter is used.

Ultimately, for each range and Doppler frequency reso-
lution cell (τ0, f0) within the search area, specific optimal
mismatched filters have to be applied. Moreover, mismatch
between filter and radar waveform is naturally associated
with some signal-to-white-noise ratio (SWNR) loss. Yet, for
the clutter zone that does not exceed 0.2, equation (4), these
losses are less than 2dB in most cases, which is comparable
to the SWNR loss for currently used tapers that control range
and Doppler frequency sidelobes in traditional LFMCW
waveforms [9].

In [8] we introduced our experimental results that demon-
strated this methodology could be practically implemented
for SIMO radar operations. In this paper we investigate the
role mismatched filtering may play for MIMO operations with
much more severe restriction on the “sidelobe-free” area that
is given in equation (3).

2. MISMATCHED FILTERS FOR GROUND
CLUTTER MITIGATION IN MIMO RADAR

APPLICATIONS

Let us consider a transmit (Tx) 2D antenna architecture,
where each of the K-MIMO waveforms is transmitted by in-
dividual antenna elements (or sub-arrays). We assume these
elements are identical and are described by the beampattern
GT (φ, θ|φ0, θ0), where φ is the elevation angle (El) calcu-
lated off the zenith, θ is the azimuth (Az) calculated off the
boresight; (φ0, θ0) is the beamsteering direction. Let these
identical Tx modules be arranged into a 2D array with coor-
dinates (xTk

, yTk
) of its k-th element (k = 1, . . . ,K) on the

plane.
The manifold of this Tx array is calculated as

EK(φ, θ) = exp

[
i
2π

λ
(u xTk

+ v yTk
)

]
(6)

where u = sinφ sin θ and v = sinφ cos θ
Similarly, we may introduce a 2D L-element receive

(Rx) antenna array with the beampattern of its elements
GR(φ, θ|φ0, θ0), and their positions on a plane (xRl

, yRl
)

(l = 1, . . . , L). Correspondingly, the manifold of this 2D Rx
array may be calculated as

EL(φ, θ) = exp

[
i
2π

λ
(u xRl

+ v yRl
)

]
l = 1, . . . , L (7)

If each of K Tx antenna modules transmits its “own”
MIMO waveform uk(t), k = 1, . . . ,K, then the scalar sig-
nal backscattered by an omni-directional point scatterer with
random scattering coefficient εc, located in the direction of

departure (DoD) from the Tx array (φ, θ), at the slant (group)
range τ , may be presented as

s(t, τ, f) = εcGT (φ, θ|φ0, θ0)

K∑
k=1

uk(t− τ)Ek(φ, θ) (8)

Note, that propagation losses, power, etc, is incorporated into
the random coefficient εc. As in [1], we consider a traditional
Tx array, so that all waveforms are delayed and shifted in
Doppler frequency by the same value (τ, f).

Also note, that in fact (φ, θ) is, strictly speaking, the an-
gles of arrival of the plane wave upon the considered scat-
terer. Due to tilts and gradients in the ionosphere, these an-
gles are not necessarily equal to the actual angles of departure
from the transmitter, and this distinction may be important in
scenarios with perturbed propagation conditions. Since the
beampatternGT (φ, θ|φ0, θ0) is usually reasonably broad, this
distinction may be ignored in what follows.

With equation (8) describing the scalar signal backscat-
tered by a point scatterer in all directions, the signal arriving
at the L-element Rx antenna ports (element, or, sub-arrays)
is therefore described as a scaled version of the following L-
element vector:

XL(t, τ, f) = s(t, τ, f)GR(φ′, θ′|φ0, θ0)EL(φ′, θ′) (9)

with
s(t, τ, f) = s(t, τ) exp[i2πft] (10)

where f is the Doppler frequency specified by the radial ve-
locity of the point scatterer with respect to Tx and Rx arrays.
In general, φ′ 6= φ, θ′ 6= θ, yet, with propagation along the
great circle, we usually have θ′ = θ but difference in eleva-
tion angles of departure and arrivals in multi-mode propaga-
tion environment may be significant [1]. Also note, that τ in
equation (9) now accounts for the entire group range.

If we consider an M -element FIR mismatched filter, then
in the most general case for target detection at the coordi-
nates (τ0, f0, φ0, θ0), we have to consider a KxLxM -variate
MIMO space-time filter with the point scatterer equation (4)
output scalar signal, presented as follows:

xcout(τ0, f0, φ0, θ0) =
K∑
k=1

∫ τ0+T

τ0

WH
Lk(t, τ0|τ0, f0, φ0, θ0)XL(t, τ, f)dt (11)

where

WLk = wk(t− τ0|τ0, f0, φ0, θ0) exp[i2πf0t]

×WLK(τ0, f0, φ0, θ0) (12)

in equation (12) wK(t − τ0|τ0, f0, φ0, θ0) is the impulse re-
sponse of the M -variate mismatched filter, tailored to tar-
get detection at the coordinates (τ0, f0, φ0, θ0). Of course
we may consider some filter for all target angle coordinates
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(φ0, θ0). Similarly WLK is the L-variate Rx antenna beam-
forming vector, also tailored to this particular resolution cell
(τ0, f0, φ0, θ0). In this general case, with respect to equa-
tions (9) and (12), we get

xcout(τ0, f0, φ0, θ0) =
K∑
k=1

∫ τ0+T

τ0

WH
Lk(t, τ0|τ0, f0, φ0, θ0)

×XL(t, τ, f)dt

= εc

K∑
k=1

K∑
j=1

WH
LK(τ0, f0, φ0, θ0)EL(φ′, θ′)

×
∫ τ0+T

τ0

w∗K(t− τ0)uj(t− τ) exp[i2π(f − f0)t]dt

×Ej(φ, θ)GT (φ, θ|φ0, θ0)GR(φ′, θ′|φ0, θ0) (13)

Let us now introduce the KxK-variate cross-ambiguity ma-
trix function χWU (∆τ,∆f |φ0, θ0)

χWU (∆τ,∆f |φ0, θ0) =
{
χwkuj (∆τ,∆f |φ0, θ0)

}
k, j = 1, . . . ,K (14)

where

χwkuj (∆τ,∆f |φ0, θ0) =

∫ τ0+T

∆τ=τ−τ0,∆f=f−f0
w∗k(t− τ0|τ0, f0, φ0, θ0)

×uj(t− τ) exp[i2π(f − f0)]dt (15)

Therefore, if we introduce a target coordinate-dependentKL-
variate vector WKL(τ0, f0, φ0, θ0)

WKL(τ0, f0, φ0, θ0) = [WH
L1, . . . ,W

H
LK ] ∈ C1×KL (16)

we may re-write equation (13) as

xcout(τ0, f0, φ0, θ0) = εcGT (φ, θ|φ0, θ0)GR(φ′, θ′|φ0, θ0)

×WH
KL(τ0, f0, φ0, θ0)

× [EL(φ′, θ′)⊗ χWU (∆τ,∆f |φ0, θ0)EK(φ, θ)] (17)

In equation (17), EK(φ, θ) is the Tx array manifold speci-
fied by the clutter scatterers DoD (φ, θ). EL(φ′, θ′) is the
Rx array manifold specified by its DoA (φ′, θ′). Therefore,
for the power of this clutter point scatterer at the output of
the MIMO receiver matched to the target at the coordinates
(τ0, f0, φ0, θ0) we get

σ2
cout

(τ0, f0, φ0, θ0) = σ2
c |GR(φ′, θ′|φ0, θ0)|2

× |GT (φ, θ|φ0, θ0)|2WH
KL(τ0, f0, φ0, θ0)

×EL(φ′, θ′)EHL (φ′, θ′)

⊗χWU (∆τ,∆f |φ0, θ0)EK(φ, θ)

×
[
EHK (φ, θ)⊗ χHWU (∆τ,∆f |φ0, θ0)

]
×WKL(τ0, f0, φ0, θ0) (18)

where σ2
c = E[|εc|2].

For the target at φ0, θ0,∆τ = 0,∆f = 0 we get

σ2
tout

= σ2
t |GR(φ0, θ0)|2|GT (φ0, θ0)|2

×WH
KL(τ0, f0, φ0, θ0)

×
[
EL(φ0, θ0)EHL (φ0, θ0)⊗ χW,U (0, 0, φ0, θ0)

]
×
[
EK(φ0, θ0)EHK (φ0, θ0)⊗ χHW,U (0, 0, φ0, θ0)

]
×WKL(τ0, f0, φ0, θ0) (19)

Now note that integration in equation (18) over clutter point
scatterer coordinates [φ, θ, φ′, θ′, τ, f ] within the space-time-
Doppler frequency cube occupied by clutter will provide the
total clutter power at the output of the MIMO receiver de-
signed to detect a target with coordinates (τ0, f0, φ0, θ0).

Following the same approach as in [1] for full mitigation
of clutter scatterers within the clutter area Ac at the output of
this MIMO receiver, we assume that the following condition
on the cross-ambiguity matrix function applies:

|χWU (∆τ,∆f, φ0, θ0)|2 = 0 (20)

(∆τ,∆f) ∈ Ac
The later means that the mismatched filters

wK(t− τ0|τ0, f0, φ0, θ0)

have to be designed such that∣∣∣∣∣
∫ τ0+T

τ0

w∗K(t− τ0)uj(t− τ) exp[i2π(f − f0)t]dt

∣∣∣∣∣
2

= 0

(21)
where w∗K(t − τ0) is short-form of wK(t − τ0|τ0, f0, φ0, θ0)
and

for all (τ − τ0, f − f0) ∈ Ac
For SIMO applications (k = j) we demonstrated in [8]
that the maximal zone (τ − τ0, f − f0) ∈ Ac where noise-
like waveform sidelobes could be successfully rejected with
SCV≥70dB with SWNR losses ≤2dB, is equal to SA= 0.2.
Obviously, condition equation (21) requires that this maximal
zone has to be reduced to

SA ≤ 0.2/K (22)

for MIMO applications with K MIMO waveforms. There-
fore, similarly to the matched filter MIMO technique with to-
tal “sidelobe-free” zone reduced by K times, equation (3),
we observe the same cleared area reduction in the considered
approach.

Note, that as in [1, 2, 3, 5], conditions in equation (20)
and (21) provide clutter mitigation in range/Doppler resolu-
tion cell (τ0, f0) completely irrespective of the transmit an-
tenna manifold and DoD (φ, θ), since every waveform uj(t)
response gets rejected by the filter matched with the particular
waveform uk(t) in equation (21).
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For the considered here and in [1] problem of mode se-
lection, this requirement may be treated as excessive. Indeed,
recall that the main idea of the mode-selective MIMO tech-
nique, is to provide backscattered signal selection, based upon
the elevation of departure for mixed mode returns propagated
back to the receive antenna on the same “wanted” propaga-
tion mode. For example, “wanted” clutter (and target) re-
turns propagated via E–E mode, should be separated from
“unwanted” clutter returns, propagated via F–E mode.

For each “clutter” resolution cell with delay τ we may
introduce the synthetic clutter waveform

uΣ(t−τ |φ, θ) =

K∑
j=1

uj(t−τ)Ej(φ, θ)GT (φ, θ|φ0, θ0) (23)

Obviously, for each τ and the related (φ, θ), this waveform is
different. Note, that with respect to equation (23), the expres-
sion equation (13) may be re-written as follows:

xcout(τ0, f0, φ0, θ0) =

K∑
k=1

WH
LK(τ0, f0, φ0, θ0)

×EL(φ′, θ′)GR(φ′, θ′|φ0, θ0)

×
∫ τ0+T

τ0

w∗K(t− τ0|τ0, f0, φ0, θ0)

×uΣ(t− τ |φ, θ) exp[i2π(f − f0)t]dt (24)

The main difference with respect to the matched filter ap-
proach in [1, 2, 3, 5] is that the mismatched filter wK(t −
τ0|τ0, f0, φ0, θ0) may be designed for sidelobe mitigation cre-
ated by the different (for each sidelobe) waveforms uΣ(t −
τ |φ, θ) in equation (24). Indeed, the discussed above MIMO
mode selection requires the mismatched filter in equation (24)
to reject all sidelobes inAc = (τ, φ) created by different side-
lobes in Ac synthetic waveforms uΣ(t − τ). For example, if
the clutter area Ac is represented by the finite set of points
(τc, fc) for c = 1, . . . , Q selected over some fine grid, the
mismatched filter optimisation problem may be formulated
as finding

min

∣∣∣∣∣
∫ τ0+T

τ0

wK(t− τ0|τ0, f0, φ0, θ0)dt

∣∣∣∣∣
2

(25)

subject to∫ τ0+T

τ0

w∗K(t− τ0|τ0, f0, φ0, θ0)

×uΣ(t− τc|φc, θc) exp[i2π(f − fc)t]dt = 0 (26)

Practically, equations (25) and (26) are solved in vec-
tor/matrix form after waveform and filter response sampling
[8]. From equation (26) follows that introduction of a DoD-
dependent synthetic waveform uΣ(t − τ), has allow for
retaining the same maximal “sidelobe free” zone delivered by

mismatched filtering equation (4) as in the SIMO application
case. Note, that since for each delay this synthetic waveform
is different, this property is achieved only due to invariance
of the mismatch filter rejection capability with respect to the
noise-like waveform.

3. CONCLUSIONS

In this paper, we investigated the potential role of noise-like
MIMO waveforms with “thumb-tack”-like ambiguity func-
tions complemented by mismatched compression filtering for
HF-OTHR mode-selection applications [1, 2, 3]. We demon-
strated that DoD-invariant clutter mitigation by mismatched
filters is efficient only if the range-Doppler area actually oc-
cupied by “normal” clutter is K-times smaller than the max-
imal rejection zone in single-waveform (SIMO) applications.
Since this maximal zone for SIMO mismatched filtering is
quite limited [8]

(τmax − τmin)(fmax − fmin) ≤ 0.2 (27)

its K-times reduction in MIMO applications with K noise-
like waveforms significantly reduces the scope of practical
scenario addressed by this approach.

We demonstrated that for the given beamsteer directions
of the MIMO beamformer, and with the proper geometry se-
lection of the 2D MIMO Tx and Rx antenna arrays as con-
sidered in [1], an alternative approach with DoD-dependent
“normal” clutter suppression is enabled by the properties of
mismatched filters.

Specifically, for a given resolution cell occupied by “nor-
mal” clutter in a direction (φ, θ) associated in HF propaga-
tion geometry with its (group) range τ , we can introduce a
(range dependent) synthetic waveform. This synthetic wave-
form is the coherent sum of K individual MIMO waveforms
weighted by the Tx antenna manifold vector, specified by
DoD (φ, θ). A mismatched filter optimised for sidelobes mit-
igation with different sidelobes created by different wave-
forms, is as effective as the filter optimised for the case when
all rejected sidelobes are created by the same waveform. For
this reason, the maximal dimensions of the clutter zone may
remain the same as per the SIMO application.
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