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ABSTRACT

Compressed sensing has proved key in resolving commonly
sparse scenarios where MIMO Radar schemes are envisioned.
This is normally addressed via cross-range imaging, equipped
with a matched filter for each desired range. This paper takes
a more general approach by formulating a full 3D convolu-
tion sensing matrix for joint range/cross-range imaging, while
setting conditions for minimizing its corresponding mutual
coherence. These conditions suggest that both the so-called
complementary sequence sets, and manifold vectors allow for
an extra degree of freedom in the design process. Simula-
tions suggest that in comparison to independent Gaussian se-
quences, these complementary sets greatly improve robust-
ness by reducing the system mutual coherence by an order of
magnitude.

Index Terms— MIMO Radar, Compressed Sensing

1. INTRODUCTION

Multi-Input-Multi-Output (MIMO) radars have successfully
improved parameter identifiability, resolution, and robust-
ness, when compared to its single-antenna and phased-array
counterparts [1],[2]. In such scenario, the received signal
usually undergoes a bank of matched filters, whose delays are
set in correspondence to the desired range bins, ultimately
identifying the direction and reflectance of a given target. In
this sense, range and cross-range parameters are commonly
treated in separate, as in the developed models of [3] and [4],
for example. While [3] designs complementary sequences
sets for improving imaging performance via matched fil-
tering and least-squares (LS) or Capon beamformation, [4]
derives recovery conditions when imaging is addressed via
compressed sensing (CS) matrices constructed by randomly
located arrays (also via matched filtering).

In this context, the goal of this paper is to jointly construct
the full range/cross-range convolution model for MIMO
radars and obtain conditions for which the mutual coherence
of the resulting sensing matrix is minimized. This is inter-
preted as a minimization of an upper-bound on the Rayleigh-
Ritz quotients corresponding to several MIMO correlation
lags, in which the involved array manifold vectors can be

simultaneously designed to achieve this purpose. We remark
that although [5] has followed a related approach towards a
3D MIMO radar design, it makes use of long Gaussian se-
quences which may demand a high level of synchronization,
and only achieve good cross-correlation properties stochasti-
cally.The proposed model aims the imaging of static targets,
commonly encountered in medical and geophysical scenes,
and it does not take into account the Doppler effect. Sim-
ulations are included in order to verify the robustness of a
CS formulation at different noise levels, and show that Gaus-
sian sequences increase the mutual coherence by an order of
magnitude.

2. MIMO RADAR SINGLE RANGE MODEL

Consider the MIMO radar model depicted in Fig. 1, consist-
ing of an array of MT isotropic transmitters, each positioned
at qm, and a second array of MR receivers, at positions de-
noted by q̃n. The antennas send narrowband pulses pi(t),
with center frequency ω0, through a homogeneous medium,
which are scattered by K far-field targets with reflectance s̄k.
These are located at a distance D, with directions given by
unitary vectors denoted by r̄k, which in turn are detected by
the receiving array.
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Fig. 1. Simplified schematic for a MIMO radar. All targets
are located at the same range.

The manifold vectors [6] for the transmitting array are de-
fined as

a(r̄k) =
[
ej

ω0
c0

r̄Tk q0 ej
ω0
c0

r̄Tk q1 · · · ej
ω0
c0

r̄Tk qMT−1

]T
,

(1)
with analogous definition for the receiving manifold vector
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denoted by b(r̄k), where c0 , λ0/2πω0 is the speed of propa-
gation for the medium.

Under the well known Born approximation [7], the re-
ceived waveform can be written as:

yr(t) =

K−1∑
k=0

x̄kb(r̄k)
[
pT (t− 2τr)a(r̄k)

]
+ n(t) (2)

where τr , D/c0, n(t) is an uncorrelated additive noise, and
x̄k is the free space path loss which we express as a corrected
reflectance for the k-th target as

x̄k , − ω2
0

16π2c20τ
2
r

s̄k = − 1

4λ2
0τ

2
r

s̄k . (3)

Also, the transmited pulse vector p(t) in (2) is denoted by

p(t) ,
[
p0(t) p1(t) · · · pMT−1(t)

]T
. (4)

Sampling the received vector at ts, i.e. yr(n) , yr(2τr+nts)
and defining p(n) , p(nts), we can rewrite (2) as

yr ,
[
yTr (N − 1) yTr (N − 2) · · · yTr (0)

]T
(5)

=

K−1∑
k=0

[Pa(r̄k)]⊗ b(r̄k)x̄k + n , (6)

where ⊗ represents the Kronecker product, and

P =


p0(N − 1) p1(N − 1) · · · pMT−1(N − 1)
p0(N − 2) p1(N − 2) · · · pMT−1(N − 2)

...
...

...
...

p0(0) p1(0) · · · pMT−1(0)


(7)

is a N ×MT matrix representing the “unrolled” pulses which
are N -samples long, and n is the corresponding sampled
noise vector. Equation (5) can be equivalently written as

yr = F̄rx̄r + n

=
[
fr(r̄0) fr(r̄1) · · · fr(r̄K−1)

]
x̄r + n

(8)

where x̄r ,
[
x̄0 x̄1 · · · x̄K−1

]T
, (9)

and F̄r is NMR ×K, with each column given by

fr(r̄k) = [Pa(r̄k)]⊗ b(r̄k) (10)
= [P⊗ IMR

] [a(r̄k)⊗ b(r̄k)] . (11)

A typical radar application forms an image from the mea-
sured data; this means recovering not only the reflectances
x̄k, but also the directions r̄k. Frequently, those directions
are obtained by beamforming techniques or by spectral DOA
estimation methods, just like the MUSIC or the ESPRIT [6].
On the other hand, beamforming can be understood as prob-
ing each direction rg at a fine grid defined by G ≥ K direc-
tions containing all targets, meaning that {rg|0 ≤ g ≤ G} ⊇

{r̄k|0 ≤ k ≤ K}. In this sense, (8) can be replaced by:

yr = Frxr + n (12)

=
[
fr(r0) fr(r1) · · · fr(rG−1)

]
xr + n (13)

where xr ,
[
x0 x1 · · · xG−1

]T
is a sparse vector with

K non-zero entries, corresponding to the values of x̄r for
which the directions r̄k and rg coincide. Hence, finding the
target directions is equivalent to recovering the support of xr.
Remark: In general, the assumption that all targets lie in a
fine grid is not satisfied in practice, implying in a “gridding
error” from the design point of view. Still, it is argued in [8]
that while recovery depends on the noise level, in a noiseless
setup the overall error bears a linear relation with the total
perturbation introduced in Fr by the use of an incorrect grid.

3. JOINT RANGE/CROSS-RANGE MODEL

The model presented in the previous section considers all tar-
gets as belonging to a single range. For multiple ranges, xr
becomes a function of the range delay τr, so that the received
signal must be written as a convolution integral:

yr(t) =

∫ K−1∑
k=0

xk(τr)b(r̄k)
[
pT(t− 2τr)a(r̄k)

]
dτr + n(t)

(14)
Sampling yr(t) at ts, and defining τn , τ0 − nts/2, as-
suming that all targets are confined to Q range bins, we can
write (14) as y = Fx, where F is MR(N +Q−1)×QG
block-Toeplitz matrix, which for convenience we partition
into block columns:

F =
[
F0 F1 · · · FQ−1

]
. (15)

Each Fn now has the same structure of Fr, and its
columns can be obtained by replacing P in Eq. (11) by their
zero-padded versions, say,Pn , [ 0MT×n PT 0MT×(Q−1)−n ]

T .
Recovering the support of the vector x in this model thus

determines not only the directions of arrival, but also the
range bins containing the desired targets.

4. COMPRESSED SENSING IMAGING

Obtaining x from y is complicated due to the low rank na-
ture of F . Because each of its columns have at most MTMR

degrees of freedom, rank(Fr) ≤MTMR, an ill-conditioned
situation even for long pulses. However, since x is sparse,
compressed sensing [9] can be readily used to estimate it.

The accurate recovery of x depends on the mutual coher-
ence of the columns of F , defined by

µ(F) , max
` 6=h

∣∣[F ]
∗
` [F ]h

∣∣
‖[F ]`‖2‖[F ]h‖2

, (16)

with ∗ denoting complex conjugate transposition, and where
‖[F ]`‖2 denotes the Euclidean norm of the `-th column of F .
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It can be shown that, given µ(F), we can recuperate

K <
1

2

(
1 +

1

µ(F)

)
(17)

elements of x perfectly [9].
To compute the mutual coherence one can take advantage

of the structure of F , whose Gram matrix becomes block-
Toeplitz. In this case, each such block is given by

[F∗l Fm]i,j = {[Pl ⊗ IMR
] ci}∗ {[Pm ⊗ IMR

] cj} (18)

= c∗i [R(l −m)⊗ IMR
] cj (19)

where R(l−m) , P∗l Pm is the pulse vector autocorrelation
function, and ci , a(ri)⊗b(ri) for compactness of notation.
Let k = l − m, so that G(k) , R(k) ⊗ IMR

. Then, the
coherence measure (16) can be equivalently written as

µ(F) = max
i 6=j∨k 6=0

c∗iG(k)cj

[c∗iG(0)ci]
1/2 [

c∗jG(0)cj
]1/2 . (20)

Observe that in minimizing the above quotient, we have
freedom to select both the MIMO correlation function and the
manifold directions. Because exact (weighted) orthogonality
of the manifold vectors can only be attained at one particular
lag k, we can adopt the following procedure.

For the lag k = 0, we pick a set of directions such that
ci and cj annihilates (20) for a given i 6= j; For k 6= 0,
we would like to design G(k) as close to the null matrix as
possible. That is, for k = 0 the numerator in (20) is given by

[F∗l Fl]i,j = [a∗(ri)R(0)a(rj)] [b∗(ri)b(rj)] (21)

which represents the product between the receiver beam-
pattern, i.e., ΥRX(ri, rj) , b∗(ri)b(rj), and the weighted
beampattern of the transmitter, defined as ΥTX(ri, rj) ,
a∗(ri)R(0)a(rj). The fact is that for some array geometries,
it is possible to choose directions where either beampatterns
are zero; the number of selected directions defines the di-
mension G of the grid. The simplest choice is to enforce
R(0) = NI, which ensures that all the pulses have the same
power and are orthogonal at the zero lag. As a result, this
choice also simplifies the design of the transmitting array.

One array geometry that offers a simple selection of di-
rections is the uniform linear array (ULA) [6], composed by
M equally spaced elements, which can be aligned with the
z-axis. The direction vectors can be entirely represented by
the arrival angles {φi, φj} ∈ [−π/2, π/2], so that the receiving
beampattern vector can be written more explicitly as

ΥRX(φi, φj) = e−j
2π
λ0
ψijqz

sin
(

2π
λ0
ψij

MRdR
2

)
sin
(

2π
λ0
ψij

dR
2

) (22)

where ψij , sin(φi) − sin(φj), qz is the z-axis coordinate
of the center of the array, and dR is the distance between the

array elements. Usually, one chooses dR as λ0/2; this choice
induces a single main lobe and MR − 1 zeros in the beam-
pattern. Similar reasoning can be carried out for the transmit-
ting array beampattern, just by changing the corresponding
parameters accordingly.

Moreover, it is possible to select different spacings for
both arrays. For instance, by setting the distance between the
elements of the transmitting array to dT = dRMR, the com-
bined trasmit/receive elements collapse to the virtual ULA
arrangement described in [2]. If dR = λ0/2, the combined
patterns will generateMTMR−1 possible angles φj for each
selected angle φi. For such arrangement, we can pick a grid
of G = MTMR angles, namely, φg = φ0 + gδg , where
δg , arcsin(2g/MRMT ), and g ∈ Z, g ∈ [0, G). Note that
exchanging the receive and transmit arrays does not alter the
resulting choice of angles.

Now, introduce the Cholesky factorization G(0) = LL∗,
and define c̄i , L∗ci. For a correlation lag k 6= 0, the ratio
in (20) can be written as

max
i6=j∨k 6=0

c̄∗iL
−1G(k)L−∗c̄j
‖c̄i‖2‖c̄j‖2

(23)

which assumes the form of the well known Rayleigh quo-
tient (see, e.g., 9.8.36 in [10]), however, one for every G(k).
A simple upper bound for (23) is

λmax(L−1G(k)L−∗) (24)

in terms of the maximum eigenvalue λmax(·). Since we
have that λmax(L−1G(k)L−∗) ≤ ‖L−1G(k)L−∗‖F =

‖G−1(0)G(k)‖F = M
1/2
R ‖R−1(0)R(k)‖, and R(0) is

finite, this requires ideally, R(k) as a null matrix for all
k ∈ [1, Q).

Independent Gaussian sequences sets, as considered in
[5], allows us to approximate the above requirements, i.e.,
R(0) = NI and R(k) = 0, in a stochastic sense, but these
may demand a high level of synchronization (as well as an
increase in mutual coherence as we shall see next). As an
alternative, in this paper we make use of the so-called com-
plementary sequences sets, which can be generated by opti-
mizing the following block LS criterion (see Eq. (11) in [3]):

min
R(k)

‖R(0)−NIMT
‖2F + 2

Q−1∑
k=1

‖R(k)‖2F (25)

One advantage of working with complementary se-
quences is that we can produce zero correlations in a range of
only Q − 1 samples, yielding lower cross-correlation within
the same range when compared to its Gaussian sequences
counterpart. Note that it is also possible to restrict the pulse
samples to specific modulations, such as QAM or BPSK.

5. NUMERICAL EXAMPLE

We consider a MIMO radar system which comprisesMT = 5
transmitting and MR = 11 receiving antennas, in a virtual
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(a) LASSO Compressed Sensing

(b) Least Squares

(c) LASSO Compressed Sensing

(d) Least Squares

Fig. 3. Reconstructed images with (a) and (b) SNR =20 dB, (c) and (d) SNR =5 dB, using complementary sequences.

ULA configuration. For this scenario, we have employed the
WeCAN algorithm [3] to design a complementary set of se-
quences which minimizes (25) with a length N = 256, and
for Q = 48 low cross-correlation samples.

The exact target image for the experiments is shown in
Fig. 2. We restricted the targets to be within 30 range bins,
while the visible area φ ∈ [−π/2, π/2) was divided into 220
cross-range directions, such that sinφ is equally spaced.

Fig. 2. True target image.

This virtual ULA allows us to construct a grid composed
of G = 55 directions, which is less dense than the true tar-
gets grid. We circumvented this issue by dividing the target
grid into four interleaved direction grids of the same number
G = 55. For this setup, we obtained µ(F) ≈ 0.014. The
recovery algorithm used was the `1-regularized least-squares,
well known as the LASSO algorithm [11] in order to retrieve
the target support. Figure 3(a) shows the resulting image for a
signal-to-noise ratio, i.e., SNR = 20 dB; in contrast, Fig. 3(b)
shows the result when a LS beamformer is applied at individ-
ual ranges, as in [3]. Figures 3(c) and 3(d) show the analogous
images when SNR = 5 dB. In order to compare our results

with the ones that would be produced by independent Gaus-
sian sequences as in [5], we illustrate the resulting image for
the latter in Fig. 4. In this case, the mutual coherence is in-
creased by one order of magnitude, i.e., µ(F) ≈ 0.15, which
visually degrades robustness when compared to Fig. 3(c).

We remark that despite the fact our model was developed
considering point targets, these numerical examples show that
we have good image recovering even in the case of extended
targets. By scanning through interleaved grids, we were able
to further improve the target edge detection.

Fig. 4. Image formed via LASSO, using Gaussian se-
quences (SNR =5 dB).

6. CONCLUDING REMARKS

In this paper we have proposed a design procedure for a full
3D compressed sensing matrix in a MIMO radar scenario.
Even in a noisy environment, the image reconstruction was
adequate, outperforming traditional LS beamformation. The
MIMO pulse cross-correlation along with the complementary
sequences design borrowed from [3] were crucial when min-
imizing the mutual coherence of the system, and performed
favorably in comparison to the Gaussian pulses based design.
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