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ABSTRACT

Estimating the parameters of moving sound sources using only
the source signal is of interest in low-power, and contact-less
source monitoring applications, such as, industrial robotics and
bio-acoustics. The received signal embeds the motion attributes
of the source via Doppler effect. In this paper, we analyze the
Doppler effect on mixture of time-varying sinusoids. Focusing, on
the instantaneous frequency (IF) of the received signal, we show
that the IF profile composed of IF and its first two derivatives can
be used to obtain source motion parameters. This requires a smooth
estimate of IF profile. However, the numerical implementation of
traditional approaches, such as analytic signal and energy separation
approach, gives oscillatory behavior hence a non-smooth IF esti-
mate. We devise an algorithm using non-uniformly spaced signal
extrema samples of the received signal for smooth IF profile estima-
tion. Using the smooth IF profiles for a source moving on a linear
trajectory with constant velocity, an accurate estimate of moving
source parameters is obtained. We see promise of this approach for
an arbitrary trajectory motion parameter estimation.

Index Terms— Moving Sources, Doppler effect, IF estimation,
IF profile, AM-FM signal.

1. INTRODUCTION

Most of the existing techniques for analyzing moving sources use the
concept of transmitting a signal of known characteristics and observ-
ing the variations in the reflected signal. These techniques include
RADAR [1] and laser Doppler velocimetry (LDV) [2]. In the case
of active moving sources, however, since the source itself is an emit-
ter (of light or sound), the obvious question is: Can the motion of
the source be analyzed using the source signal captured by a pas-
sive receiver? This avoids the need to ping the source with a known
signal. In this paper, we address the question for a moving sound
source when its acoustic signal is captured by a single microphone.
Once the source gets into motion, the captured signal embeds the at-
tributes characterizing motion of the source. Denoting the captured
signal by xD(t), we have: xD(t) = D[x(t)] where, the operator D
models the effect of motion of the source on the transmitted signal
x(t). The source signal x(t) can in general be a periodic, modulated,
or transient signal. The class of signals x(t) belongs to can make a
difference in terms of how easily the motion attributes of the source
can be deciphered from xD(t).
The effect of source motion can introduce a time-varying amplitude
scaling and time-delay in the captured signal, xD(t). For a source
emitting a stationary tone of frequency fT and moving with a radial
velocity vr(t) towards an omnidirectional receiver, xD(t) is given

by [3]:

xD(t) = D[a sin 2πfT t] = a(t) sinφR(t) (1)

fR(t) =
1

2π

dφR(t)

dt
= fT

(
1− vr(t)

vs

)−1

≈ fT
(
1 +

vr(t)

vs

)
.(2)

where vs is the velocity of sound (taken as 340 m/s in air), a(t) is the
amplitude modulation modeling the slow increase in amplitude as
the source approaches the receiver, and slow decrease as the source
passes away, fR(t) is the instantaneous frequency of the recieved
signal. The approximation in (2) holds for practical acoustic mov-
ing sources of interest with vr < vs/10. For source approaching
the receiver, vr > 0, and for source moving away from the receiver,
vr < 0. In this paper, we first present an analysis of D[.] operated
on nonstationary signals. Focus is on nonstationary signals which
allow compact modeling with a mixture of time-varying amplitude
and frequency sinusoids (see Section 2). This can enable analysis
of xD(t) specifically for x(t) which favours a multi-component am-
plitude modulated-frequency modulated (AM-FM) decomposition,
such as chirp harmonics, speech, and music [4].
Next (in section 3), we address the problem of moving source pa-
rameter estimation. The source is considered moving with a constant
velocity on a linear path. The parameters of interest are P={range
(d), speed (v), and transmitted frequency (fT )}. We show that in
this simplified source motion set-up, profiling the IF with its first-
and second- order derivative estimates gives a fairly straight-forward
approach to retrieve P . Analysis highlights the need to estimate a
smooth estimate of IF in the received signal. Although, approaches
such as analytic signal formulation [5] and energy separation ap-
proach (ESA) [6] have been used widely for instantaneous frequency
(IF) [7] estimation, these approaches and their numerical estimates
do not suffice for smooth IF estimate for the case in hand. Further,
Doppler frequency shift can result in wideband signals due to fast
and large IF deviations, and such conditions are not suited for exist-
ing IF estimation approaches [8–11].
In section 4, we propose a new approach to estimate IF using non-
uniform samples of xD(t). We show that non-uniform samples, here
signal extrema samples, encode both AM and IF information. An
algorithm resorting to weighted local polynomial regression (LPR)
using the non-uniform samples is developed to get smooth AM and
IF profile estimate. Estimation of P obtained using the proposed IF
profile estimate is found close to the ground truth. The traditional
IF estimates do not perform well when compared to the proposed
approach (see section 5).

The simplified set-up of source moving in a linear path with a
constant velocity is a constrained case of moving source parametriza-
tion when the source is moving in an arbitrary trajectory. Such
scenarios often arise in monitoring maneuvers in bio-acoustics (in-
sect and bird flights), and industrial robotics. We hypothesize that
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estimating arbitrary trajectory can be treated as a generalization of
the linear case, and conclude in Section 6.

2. ANALYSIS

In this section, we will consider the operation of D[.] on x(t) for
different class of signals, so as to generalize to a mixture of time-
varying sinusoids.

2.1. Signals with Amplitude Modulation (AM)

Consider, x(t) = a(t) sin 2πfT t where a(t) > 0 is a lowpass AM
[12]. Operating D[.] on x(t) we get:

xD(t) = D[x(t)] = D[a(t) sin 2πfT t]

= D

[(
a0 +

K∑
k=1

ak cos (2πfkt+ φk)

)
sin 2πfT t

]

= D

[
a0 sin 2πfT t+

K∑
k=1

ak cos (2πfkt+ φk) sin 2πfT t

]

= D [a0 sin 2πfT t] +
1

2

K∑
k=1

akD [sin (2π (fT + fk) t+ φk)]

+
1

2

K∑
k=1

akD [sin (2π (fT − fk) t− φk)]

Using (1) and (2) and tracing back upwards,

xD(t) =

(
a0(t) +

K∑
k=1

ak(t) cosφk,R(t)

)
sinφR(t)

xD(t) = aD(t) sinφR(t). (3)

We see the effect of D[.] on both the AM and transmitter frequency
separately. The effect on transmitted frequency remains same as in
(1) for a tone.

2.2. Signals with Frequency Modulation (FM)

Consider, x(t) = a sinφ(t), where φ(t) = 2πfct+2πκf

∫ t

0

fm(τ)dτ ,

fm(τ) is the FM, and fc is the carrier frequency [13]. xD(t) =
D[x(t)]=a(t) sinφ (t− α(t)), where α(t) = d(t)/vs models the
time-varying delay introduced due to source motion. Analyzing
received freuqency, we get:

fR(t) =
1

2π

d

dt
φ(t− α(t))

= fc
(
1− α′(t)

)
+ κffm(t− α(t))(1− α′(t))

= fc

(
1 +

vr(t)

vs

)
+ κffm

(
t− d(t)

vs

)(
1 +

vr(t)

vs

)
= fc,R(t) + κffm,D(t) (4)

xD(t) = a(t) sin 2π

(∫ t

0

fR(τ)dτ

)
xD(t) = a(t) sinφD(t) . (5)

where fm,D(t) = D[fm(t)]. We see that the effect of D[.] can be
decomposed on the received frequency fR(t) as acting separately on
fc and on FM fm(t).

2.3. Additive mixture of AM-FM signals

Consider, x(t) =

K∑
k=1

ak(t) sinφk(t) as a mixture of K mono-

component AM-FM signals non-overlapping in frequency content.
Operating D[.] on x(t) we get:

xD(t) = D[x(t)] = D

[
K∑

k=1

ak(t) sinφk(t)

]

Using (3) and (5), xD(t) =

K∑
k=1

aD,k(t) sinφD,k(t) . (6)

We see that each mono-component in the multi-component mixture
independently encodes the motion parameters. Hence, an approach
to motion parameter estimation is to first do a multi-component de-
composition using approaches such as empirical mode decomposi-
tion [14], and then analyze each obtained mono-component sepa-
rately. Although both AM and FM encode motion parameters, we
will focus on using FM in the received signal. For a stationary sound
source, the AM has been shown to be more affected than FM due to
reverberation [15, 16]. Hence, the motion parameter estimates when
obtained using AM may be less robust in a general acoustic environ-
ment.

In the next section we analyze a tone signal to understand how
the motion parameters are encoded in FM, and how to decipher
them.

3. SOURCE PARAMETER ESTIMATION

Consider, a hypothetical scenario of a sound source moving on a
linear path with a constant velocity. The goal is to estimate the mov-
ing source parameters using only a single fixed microphone. The
microphone is omnidirectional, and the source moves at a velocity
v, emitting a tone at fT . The parameters of interest are P={range
(d), v, and fT }. The setup is illustrated in Fig. 1. We assume the
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Fig. 1. [In color] Schematic of moving source and receiver.
source trajectory makes a perpendicular distance of d0 with the mi-
crophone, and the instant at which d(t) = d0 will be referred to
as the cross-over point. The time-instant of cross-over will be de-
noted by tc. Fig. 1 shows the gradual decrease in IF as the source
approaches the microphone on the linear path (blue straight path).
The rate of variation in IF will depend on d0 and v; a smaller d0
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with higher v gives a higher rate of IF variation than a larger d0 with
smaller v. This is shown for three sets of {d0, v} with fT = 100 Hz
in Fig. 1. We analyze the Doppler shift, or the variation in received
IF (denoting by fR(t)), below.

fR(t) = fT

(
1 +

vr(t)

vs

)
= fT

(
1 +

v cos θ(t)

vs

)
(7)

cos θ(t) = v
(tc − t)
d(t)

, d(t) =
√
d20 + v2(tc − t)2 (8)

⇒ fR(t) = fT

(
1 +

v(tc − t)
vs
√

(d0/v)2 + (tc − t)2

)
. (9)

3.1. Estimation of fT

Analyzing the variation in slope of fR(t), it is clear that fR(t) has
an inflection point at the cross-over instant tc. This is illustrated in
Fig. 2. Thus, the extrema instant in derivative of fR(t) or the zero-
crossing instant in second derivative of fR(t) gives tc. At t = tc,
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Fig. 2. [In color] Received signal IF profile composed of IF and its
first two derivatives. The plots have been rescaled to illustrate the
variation at the cross-over instant tc.

θ(tc) = π/2, that is the velocity vector of the source is perpendic-
ular to the line joining the source and the receiver. Hence,the radial
velocity vr becomes zero at this time instant. Putting t = tc in (9)
we get fR(tc) = fT .

3.2. Estimation of v and d

Analyzing first two derivatives of fR(t) we get:

f ′R(t) =
−fT vd20

vs [(d0/v)2 + (tc − t)2]3/2
(10)

f ′′R(t) =
−3fT vd20(tc − t)

vs [(d0/v)2 + (tc − t)2]5/2
(11)

f ′R(t)

f ′′R(t)
=

[
(d0/v)

2 + (tc − t)2
]

3(tc − t)
(12)

We obtain the ratio d0/v by substituting any value of t around tc in
(12). Substituting d0/v in (9) we obtain v. From the ratio d0/v we
get d0, and d(t) is obtained by d(t) =

√
d20 + v2(tc − t)2. Thus,

we see that using IF profile of the received signal, P can be ob-
tained in a straight forward manner. The FM in the received signal
xD(t) however is a wideband signal (due to Doppler shifts induced
by motion of the source) and may have large frequency deviations
depending on v, d0, and fT . Also, the IF profile estimation requires
smooth IF estimate. In the next section, we propose a new algorithm
to get a smooth estimate of IF overcoming performance limitations
of traditional methods under these cases.

4. IMPROVED AM AND IF ESTIMATION

Consider a mono-component AM-FM signal x(t) = a(t) sinφ(t)
and let Se denote the captured data-set over a finite duration using
signal extrema sampling.

{x(ti), ti} ∈ Se ⇒ x′(ti) =
dx

dt

∣∣∣
ti

= 0

For a ZC instant ti, x(ti) = a(ti) sinφ(ti) = 0. As a(t) > 0 ∀t,
hence φ(ti) = iπ (unwrapped phase). Thus, only instantaneous
phase (IP) information is contained in zero-crossing (ZC) instants,
and AM information is absent. Using this, IF estimation has been
proposed in [17] for phase signals. Between two successive ZC in-
stants, we have an extrema sample which can aid in tracking AM
variations as well as IP variations. At any extrema instant ti we
have,

x(ti) = a(ti) sinφ(ti) (13)
x′(ti) = a′(ti) sinφ(ti) + a(ti)φ

′(ti) cosφ(ti) = 0 (14)

For lowpass AM, sup
t

∣∣∣ a′(t)

a(t)φ′(t)

∣∣∣ << 1 holds [18]. In other words,

a(t) variation in a pseudo period of x(t) i.e 2π/φ′(t) is small. Under
this assumption, at extrema instants we have: φ(ti) = (2i+ 1)π/2,

and a(ti) =
x(ti)

sign[x(ti)]
, ∀ti ∈ Se.

4.1. Algorithm

Using the sampled data-set Se, the estimation of envelope and IP
can be based on a global polynomial regression [17, 19]. In practice
however, variations in envelope and IP can be arbitrary, this makes
polynomial order choice a model estimation problem. Assuming no
information about the nature of variations in IP, we use a local poly-
nomial regression (LPR) [20]. Here LPR, for IP estimation at any in-
stant, is carried out by making a least squares (LS) fit to the k-nearest
neighbor samples from Se with a d degree polynomial. Smooth es-
timates of IF and its first two derivatives are obtained by performing
derivative operations on the obtained local polynomial fit for IP. Fur-
ther to characterize a wideband FM, we associate a diagonal weight
matrix with the LS formulation in LPR. The diagonal entries are de-
pendent inversely on the distance of each of the k nearest neighbor
samples from the required time instant. We find this essential to track
the wideband FM with sudden frequency deviations more precisely,
and such scenarios can occur due to Doppler effects depending on
P . A comparison of LPR with a weighted LPR is shown in Fig. 3.
As can be seen, in LPR higher k gives more smoothness but at the
expense of loss of good tracking of IF. However, this is not the case
with weighted LPR approach which increases smoothness maintain-
ing good tracking with increase in k. The AM is a slow varying
signal relative to the underlying phase signal. The extrema instants,
hence, serve as densely sampled set for AM. The AM estimate is
obtained by using LPR on signal amplitude values in Se.

5. SIMULATION

As introduced in section 3, we here present the estimation of P from
the IF of the received signal.

5.1. Source Signal: Tone signal

Fig. 4 shows the received IF and its first two derivatives obtained us-
ing the ES-based approach described in Algorithm 1 (choosing de =
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Algorithm 1 ES (Extrema Samples)-based approach
step 0: Set the LPR parameters k and d to: {ke, de} and {kf , df}
for AM and IF estimates respectively. Get Se data-set. Pool ex-
trema instants to Te.
step 1: For t = nTs, choose ke and kf samples from Te as
nearest neighbor in euclidean distance. Make xe and φze denote
the absolute amplitude and IP column vectors.
step 2: AM estimation: Make Vandermonde matrix V (ke ×
(de + 1)) with the ke samples. a = V†xe, and â[nTs] =∑de

k=0 ak(nTs)
k.

step 3: IF profile: Make the Vandermonde matrix V (kf ×
(df + 1)) with the kf samples. b = (WV)†Wφze, where
W = diag(|nTs − ti|−1). f̂R[nTs] =

∑df
k=1 bkk(nTs)

k−1,
f̂ ′R[nTs] =

∑df
k=2 bkk(k − 1)(nTs)

k−2, and f̂ ′′R[nTs] =∑df
k=3 bkk(k − 1)(k − 2)(nTs)

k−3,
return: â(t)|t=nTs , f̂R(t)|t=nTs , f̂ ′R(t)|t=nTs , and f̂ ′′R(t)|t=nTs .
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Fig. 3. [In color] Sigmoidal IF is synthesized using sigmoidal pa-
rameter α = 10000, and signal AM is a(t) = (2 + .5 sin 65πt); in
simulation Ts = 1/32 ms, and p = 3. (a) IF estimation using LPR,
(b) IF estimation using weighted LPR.

df = 4, and ke = kf = 14). The IF profile estimated using ES-
based approach is less noisy for first two derivatives when compared
to numerically implemented analytic signal based, and discrete-ESA
based approaches. This makes ES-based IF profile estimate more
suitable for estimation of P . We obtained Pest={d0 = 2.03 m,
v = 20.15 m/s, fT = 100.00 Hz} for Ptrue={d0 = 2 m, v = 20
m/s, fT = 100 Hz}.

5.2. Source Signal: AM-FM signal

Fig. 5 shows the received IF for an AM-FM transmitted signal. The
transmitted signal has a gaussian AM centered at tc and FM given
by fT = fc + fm(t), where fc = 100 Hz, and fm(t) = 5 sin 15πt.
Based on (4), the received IF can be decomposed as:

fR(t) = fc,R(t) + fm,D(t) (15)

In (15), for fast-varying FM in source signal, fc,R(t) can be analyzed
as a slow variation relative to fm,D(t). In such cases, fR(t) can be
decomposed using EMD [21] to extract fc,R(t). This is illustrated
in Fig. 5 (middle). The extracted IF for the carrier frequency fc was
found to closely match fc,R(t), and hence can be used for estimation
ofP . The IF estimate of fm,D(t) was found to be close to fm(t) and
can be used to analyze acoustic features of the source signal (shown
in Fig. 5 bottom).
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Fig. 4. [In color] The ES-based estimates are compared against an-
alytic signal (AS) based and discrete ESA (DESA-I). In the bottom
plot AS and DESA-I gave highly noisy estimates hence are omitted
from the plot display.
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Fig. 5. [In color] Received IF estimate and its components ob-
tained after an EMD. The transmitted signal is an AM-FM sig-
nal with FM being fT = fc + fm(t) where fc = 100 Hz, and
fm(t) = 5 sin 15πt.

6. DISCUSSION

The paper analyzed the Doppler effect on AM-FM signals. Focus-
ing on IF of the received signal, an approach to obtain the moving
source parameters was presented using IF and its first two deriva-
tives. A new algorithm based on extrema samples was used to obtain
a smooth estimate of received IF, and estimate P via IF profiling.
The approach was demonstrated for source signal being a tone. A
performance analysis of extrema sample for noisy signal, and its im-
pact in AM-FM estimation with comparison to traditional methods
is done in [22]. In future, we intend to extend the approach to esti-
mation of P for source moving in arbitrary trajectory and emitting
any acoustic signal. An arbitrary trajectory can be approximated as
a connected segments of small linear trajectories. The full analysis
of such a case will be a generalization of the linear trajectory formu-
lation used in this paper.
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