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ABSTRACT

In this paper, we describe an approach to accelerate finger-
print techniques by skipping the search for irrelevant sections
of the signal and demonstrate its application to the divide and
locate (DAL) audio fingerprint method. The search result for
the applied method, DAL3, is the same as that of DAL math-
ematically. Experimental results show that DAL3 can reduce
the computational cost of DAL to approximately 25% for the
task of music signal retrieval.

Index Terms— Audio fingerprint, audio search, informa-
tion retrieval

1. INTRODUCTION

Signal identification or retrieval for audio/video using finger-
print technology has been playing an important role in the
world. In particular, audio fingerprint technologies are be-
ing used in many services such as broadcast monitoring for
commercial messages and music, music information retrieval
via mobile phones, content monitoring on the Internet, and
second-screen services [1, 2]. In addition, due to the explo-
sion of multimedia data, the expectations for fingerprint tech-
nology are increasing.

Audio fingerprint technology is the generic term for the
technique of retrieving an audio signal identical to that given
as the query (the query signal) from a database (the stored
signal) by comparing fingerprints, which are representations
of the features extracted from these signals. According to the
objectives of the applications, discriminability of the signals,
quick retrieval from huge databases, or robustness against the
degradation of the signals due to the noise or distortion is re-
quired for audio fingerprints. Therefore, these have been ma-
jor research issues in the field of fingerprint research.

In the literature, a signal search method called time-series
active search (TAS) was proposed [3, 4]. TAS uses histograms
of features, currently called Bag of Features (BoF), as the fin-
gerprint data. TAS has been used for broadcast monitoring
for commercial messages. Another well-known approach is
to employ a binary representation of a sound spectrogram as
the audio fingerprint [5, 6, 7, 8, 9]. Audio fingerprints based
on pairs of peaks in a spectrogram were also proposed [10].
These approaches are also widely used in industry. In addi-
tion, to cope with severe additive noise such as in the case of
background music detection in the TV programs, the divide-
and-locate (DAL) method was proposed [11]. The basic idea

of DAL is to divide a spectrogram into a number of small
regions and undertake matching for each region to locate it
in the database. The small regions are quantized by vector
quantization (VQ), and the matching operations are executed
by comparing VQ codes. In addition to the above mentioned
methods, audio search techniques using computer vision ap-
proaches have also been proposed [12, 13].

The basic procedure in audio fingerprint techniques is to
search stored signal for segments similar to the query sig-
nal. This is simply accomplished by comparing the finger-
print data of the query signal with that of each segment of
the stored signal. However, if we can know that a section in
the stored signal has no segment similar to the query signal
beforehand, we can skip the search in this section as shown
in Fig. 1. For example, BoF is often used as the fingerprint
data. The BoF, which is given by summing up the BoFs for
segments in a section, is informative for predicting whether
this section has similar segments or not.

It may possible to accelerate several fingerprint tech-
niques by using this approach. In this paper, we demonstrate
the application of this approach to DAL. We call the applied
search method DAL3. The main idea of DAL3 is to divide
the stored signal into sections and skip the searches for those
that, mathematically, have no segment similar to the query
signal .

This paper is organized as follows. Section 2 describes the
fingerprint data used for DAL and DAL3 and explains these
methods. In Sect. 3, the experimental results show the search
accuracy of DAL scheme, and the computational efficiency of
DAL3 is shown. Section 4 concludes the paper.

2. METHODS

In this section, we describe the fingerprint data used for DAL
and DAL3 first. After that, we describe the DAL and DAL3
methods.

2.1. Fingerprint data

In the DAL scheme, fingerprint data are extracted in the same
way for both a query signal and a stored signal.

First, time-frequency power spectra are extracted for the
signals. Then each logarithmic power p(f, t) at frequency f
and time t is normalized to p̂(f, t) as follows:

p′(f, t) =
p(f, t)− p̄(f, t)

σ(f, t)
(1)
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Fig. 1. Overview of signal search and our approach for its
acceleration.

p̂(f, t) =

{

log10 p
′(f, t) if p′(f, t) > r

0 otherwise
, (2)

where p̄(f, t) and σ(f, t) are the average and the standard de-
viation of the logarithmic powers around (f, t), respectively,
and r is a threshold value.

The normalized spectrum is then decomposed into a
number of small time-frequency components of uniform size.
Here, F (i, t) denotes the decomposed component at fre-
quency band i (1 ≤ i ≤ b) and time t. Next, the spectrum
corresponding to each component is classified by VQ. A VQ
codebook is prepared for each frequency band. Then, let

V =









v(1, 1) v(1, 2) · · ·
v(2, 1) v(2, 2) · · ·
...

...
. . .

v(b, 1) v(b, 2) · · ·









(3)

be the obtained VQ code matrix, where v(i, t) is the VQ code
for F (i, t). The VQ codes are positive integers. This matrix
of VQ codes is used as the fingerprint data.

The fingerprint data V can be thinned out to reduce mem-
ory usage and computational cost. In our experiments de-
scribed in Sect. 3, V is thinned out to become a matrix of a
single row by interleaving the elements as follows:

V = (v(1, 1), v(2, 2), . . . ,

v(b, b), v(1, b+ 1), v(2, b+ 2), . . .). (4)

This thinning out is dispensable. In the following descriptions
of DAL and DAL3 in this section, we do not assume this thin-
ning out. However, considering that b = 1 for the fingerprint
data, using such thinned fingerprint data in DAL and DAL3 is
straightforward.

2.2. DAL

Let a b-by-m matrix X be the fingerprint data of the query
signal; let a b-by-n matrix Y be the fingerprint data of the
stored signal; and let

Y (t : t+m− 1) =









Y1,t Y1,t+1 · · · Y1,t+m−1

Y2,t Y2,t+1 · · · Y2,t+m−1

...
...

...
Yb,t Yb,t+1 · · · Yb,t+m−1









.

(5)
We also assume m ≤ n. Let M be a b-by-m matrix such that
some assigned elements are 1 and others are 0. M is used for
masking the fingerprint data.

DAL searches Y for segments Y (t : t+m− 1) similar to
X such that

S(X,Y (t : t+m− 1)) > Sth , (6)

where Sth is a search threshold and S(X,Y (t : t +m − 1))
is the similarity between X and Y (t : t +m − 1) calculated
as follows:

S(X,Y (t : t+m− 1))
= 1

w(M)u(X ◦M,Y (t : t+m− 1) ◦M)), (7)

where w(M) is the number of non-zero elements of M , ◦ is
the element-wise product operation, and u(A,B) is a function
that returns the number of elements such that Ai,j = Bi,j 6=
0. We say that Y (t : t+m− 1) is similar to X if inequality
(6) holds.

The above procedure is usually performed using the in-
verted index constructed for the VQ codes in Y for the quick
search [14]. M is introduced for the computational cost re-
duction.

2.3. DAL3

Let VQ codes be positive integers 1, 2, . . . , q; let h(X) be the
histogram of the VQ codes in X; let hi(X) be the number of
VQ codes i in X; let

Lh(h(X), h(Y )) =

q
∑

i=1

min(hi(X), hi(Y )). (8)

In addition, we define the overlapped histogram h∗(Y (ts :
ts + l − 1)) for the section Y (ts : ts + l − 1) in Y , where
l ≥ m. h∗(Y (ts : ts + l − 1)) is a histogram of VQ codes,
but the i-th bin h∗

i (Y (ts : ts + l − 1)), that is the number of
VQ codes i, is calculated as

h∗
i (Y (ts : ts+l−1)) = max

ts≤t≤ts+l−m
(hi(Y (t : t+m−1)◦M)).

(9)
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Now, let

S∗(X,Y (ts : ts + l − 1))
= 1

w(M)L
h(h(X ◦M), h∗(Y (ts : ts + l − 1))).

Then, for any t such that ts ≤ t ≤ ts + l −m, the following
inequality holds.

S∗(X,Y (ts : ts + l − 1))
= 1

w(M)L
h(h(X ◦M), h∗(Y (ts : ts + l − 1)))

≥ 1
w(M)L

h(h(X ◦M), h(Y (t : t+m− 1) ◦M))

≥ S(X,Y (t : t+m− 1)).

This means that, if

Sth ≥ S∗(X,Y (ts : ts + l − 1)), (10)

then, for any t such that ts ≤ t ≤ ts + l −m,

Sth ≥ S(X,Y (t : t+m− 1)). (11)

That is, if Sth ≥ S∗(X,Y (ts : ts+l−1)), no segment similar
to X exists in the section Y (ts : ts + l − 1).

In DAL3, Y is divided into sections of length l, then the
overlapped histogram h∗(Y (ts : ts + l− 1)) is calculated for
each section as preprocessing. Then, given X , S∗(X,Y (ts :
ts + l− 1)) is calculated. If Sth < S∗(X,Y (ts : ts + l− 1)),
DAL is performed for the section Y (ts : ts + l− 1). If Sth ≥
S∗(X,Y (ts : ts + l − 1)), DAL for it is skipped.

Note that the search result of DAL3 is the same as that of
DAL.

3. EXPERIMENTS

For DAL3, the search accuracy and computational efficiency
depend on the search threshold Sth . In this section, first, we
explore the search threshold in terms of the search accuracy
in the playlist-generation task. Then, we investigate the com-
putational cost reduction with DAL3.

3.1. Search accuracy vs. search threshold

The experiment assumed the playlist-generation task on tele-
vision, radio, or broadcasting on the Internet. Since it is diffi-
cult to simulate a variety of signal distortions due to the codec,
the signal transmission, or other factors, we prepared com-
pressed music signals as input signals. The task was to clas-
sify the input signals by retrieving a music piece identical to
the input signal from the database and generate the playlist.

We prepared 211 music pieces from the RWC Music
Database (Popular, Classical, and Jazz Music Database) [15].
We trimmed the silent parts at the beginning and end of each
piece for the experiments. We compressed these music pieces
by Ogg Vorbis using sox on a linux computer with two com-
pression levels, 3 (approximately 112 kbps for stereo) and −1
(approximately 48 kbps for stereo), and we used these signals
for the input signals. The total length of the input signals is
approximately 945 minutes. For the database, we prepared
about 0.39 million music pieces, including the original music
pieces of the input signals. The total length of the pieces
in the database is approximately 1,518,177 minutes (25,303
hours).
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Fig. 2. Search accuracy vs. search threshold. The search ac-
curacy was evaluated for each generated title.

In the experiments, the power spectrum was extracted ev-
ery 10 ms with 60 band-pass filters equally spaced on the log-
scale frequency axis from 140 to 4500 Hz. Then, after the nor-
malization process, the spectrum was decomposed into three
components of uniform size on the log-scale frequency axis.
This means that b = 3. The size of each VQ codebook for
each band was 256. Furthermore, the fingerprint data were
thinned as in Eq. (4). We used M such that the element of the
column every 50 ms was 1 and others were 0.

The playlist was created as follows: First, a 5-s segment
was chosen every second of the input signal, and each seg-
ment was used as the query (the query signal). For each query
signal, the database was searched for a match. A series of con-
tinuous hits on the same music piece was concatenated under
time consistency filtering to create a playlist.

The accuracy was expressed in terms of the precision rate
and recall rate, which we first measured for the titles in the
generated playlist . Here,

Precision = #(correct retrieved title))/#(retrieved title),
Recall = #(retrieved target title)/#(target title).

The target title is the title that should appear in the playlist.
We evaluated the accuracy for search threshold values of 0.1,
0.4, 0.6, 0.7, and 0.8.

Figure 2 shows the results. Precision is constantly 100%
for every search threshold and for both compression levels.
With 112-kbps compression, recall is 100% for the search
threshold of 0.7 or less and 99.5% for the search threshold
of 0.8. With 48-kbps compression, it is 100% for the search
threshold of 0.6 or less and 99.1% for the search threshold of
0.7. When the search threshold value is 0.8, it goes down to
46.2%.

We also evaluated precision and recall for the playlist for
every second of the input signals. The results are shown in
Fig. 3. In this evaluation, precision is again constantly 100%
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for every search threshold and for both compression levels.
With 112-kbps compression, recall is more than 99% for the
threshold of from 0.1 to 0.7 and 92.6% for the search thresh-
old of 0.8. With 48-kbps compression, it is more than 99%
for the threshold of 0.1 and 0.4. For the threshold of 0.6, it
is 95.7%. For larger thresholds, it suddenly goes down. The
drop in recall for 48 kbps with the search threshold of 0.6 is
mostly due to the degradations around the quiet sections of
the music, including fade-in and fade-out, and these are not
serious false negatives.

Considering these results, the search threshold of 0.6 is
appropriate for this task. If the duration of each title in the
playlist is not necessary, the search threshold of 0.7 is ade-
quate.
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Fig. 3. Search accuracy vs. search threshold. The search ac-
curacy was evaluated every second of the input signal.

3.2. Computational efficiency

We also evaluated the computational cost of DAL3 compared
with DAL for the task in Sect. 3.1. Here, we used the same
211 input signals and the database of 1009 music pieces, in-
cluding the original signals of the input signals. The total
length of the music pieces in the database is approximately
5,097 minutes.

We measured the total cost of DAL operations as the to-
tal computational cost. To avoid confusion, we denote DAL
operation performed in DAL3 as sub-DAL.

For usual DAL, for each query signal, DAL searches are
performed through all the stored signals. The computational
cost in this case is

#(query signal) × (total length of stored signals). (12)

On the other hand, for DAL3, if Sth ≥ S∗(X,Y (ts :
ts + l − 1)), the sub-DAL operation for the query signal X
and the irrelevant section Y (ts : ts + l − 1) is skipped as
described in Sect. 2.3. Therefore, for DAL3, we measured
the total length of the sections on which sub-DAL search was
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Fig. 4. Comparative computational cost vs. search threshold.

performed. Note that, if sub-DAL search is performed twice
for a section for two different query signals, the length of this
section is added twice.

In this experiment, we divided each stored signal into sec-
tions of 30-s length with 5-s overlaps for DAL3. The purpose
of the overlaps is to avoid segments on the dividing border,
which are not retrieved with a query signal of 5-s length. We
determined the length of the sections, 30 s, experimentally.
Figure 4 shows the comparative computational costs assum-
ing the computational cost for DAL is 1. There is no apprecia-
ble difference between 112 and 48-kbps compression. For the
threshold value of 0.3 or less, computational costs for DAL3
are larger than those for DAL because of the overlaps of the
divided sections. However, for the larger thresholds, we can
see that computational costs for DAL3 are quite small. For
the threshold value of 0.6, which is adequate for this task,
the computational cost is approximately 25%. For the thresh-
old value of 0.7, the computational cost is approximately 6%.
DAL3 can considerably accelerate the search by DAL.

Note that the computational cost mentioned above does
not include the computational cost for the calculations of
S∗(X,Y (ts : ts + l − 1)) in inequality (10). However,
this histogram intersection can be computed efficiently using
SIMD instructions of recent processors.

4. CONCLUSION

We have described an approach to accelerate fingerprint tech-
niques and applied it to the DAL (divide-and-locate) method.
The search result of the applied method is same as that of
DAL mathematically. Experimental results show that DAL3
can reduce the computational cost of DAL to approximately
25%.

For future work, we plan to apply this approach to other
fingerprint techniques and accelerate them.
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