PREDICTING NEXT SPEAKER BASED ON HEAD MOVEMENT
IN MULTI-PARTY MEETINGS

Ryo Ishii, Shiro Kumano, Kazuhiro Otsuka

NTT Communication Science Laboratories, NTT Corporation.

ABSTRACT

We proposed a model for predicting the next speaker in
multi-party meetings by focusing on the participants’ head
movements measured by using a six degrees-of-freedom
head tracker. Results of an analysis of head movements
collected from multi-party meetings revealed differences in
the amounts, amplitude, and frequency of movement of the
head position and rotation of the speaker near the end of an
utterance in turn-keeping and turn-taking. The results also
revealed the differences in the amounts of movement, ampli-
tude, and frequency of head position movement and rotation
between the listeners in turn-keeping, turn-taking, and the
next speaker in turn-taking. We then built a next speaker
prediction model that features two processing steps to predict
whether turn-taking or turn-keeping will occur and who the
next speaker will be in turn-taking. The evaluation results
for the model suggest that the speaker’s and listeners’ head
movements contribute to predicting the next speaker.

Index Terms— Head movement, next-speaker predic-
tion, turn-taking, multi-party meetings, meeting analysis

1. INTRODUCTION

The situation in which the speaker changes (turn-taking) dur-
ing conversation is especially important. The participants
need to predict the end of the speaker’s utterance and who
will speak next and to develop a strategy for good timing
with respect to who will speak next in multi-party meetings.
If a model were developed that could predict next speakers
and the start of their first utterance, it could lay the founda-
tion for the development of natural conversational systems in
which the conversational agents speak using natural timing.
We have proposed models to predict the next speaker and
the start time of the next utterance using gaze behavior and
respiration in natural multi-party meetings [1, 2, 3]. For more
robust and highly precise prediction, the relationship between
other nonverbal behaviors and the next speaker and the start
time of the next speaking and the feasibility of creating a
prediction model using multimodal signal processing need to
be investigated.

We are investigating the role of head movement, measured
using a six degrees-of-freedom (DOF) head tracker, and a pre-
diction model for determining the next speaker using head
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movement as a first attempt. Several preliminary studies on
two-person dialogs have investigated the head movement fea-
ture related to turn-taking [4, 5], but no reported research has
investigated the relationship between six DOF head move-
ment measured using a head tracker and the next speaker and
start timing of next speaking or the creation of a prediction
model for the next speaker and start timing of next speaking
in multi-party meetings.

We collected a corpus from natural multi-party meetings
including the participants’ six DOF head movements mea-
sured using a head tracker and utterance information. We
analyzed this data to determine how the speaker’s and listen-
ers’ head movements change in turn-keeping and turn-taking.
The analysis results revealed differences in the amounts and
amplitudes of movement of the head positions and rotations
of the speaker in turn-keeping and turn-taking. They also re-
vealed differences in the amounts, amplitude, and frequency
of movement of the head position and rotation between the
listeners in turn-keeping, those in turn-taking, and the next
speaker in turn-taking. We then established a next speaker
prediction model that features two processing steps to pre-
dict whether turn-taking or turn-keeping will occur and who
will be the next speaker in turn-taking. The evaluation results
for this model showed that the speaker’s and listeners’ head
movements are effective for predicting the next speaker.

2. RELATED WORK

It is known that verbal and nonverbal behaviors, such as the
gaze behavior and prosody, have an important association
with the next speaker and the start time of the next utterance
[4, 5, 6, 7]. Several studies have explored the idea of au-
tomatically detecting whether or not turn-taking takes place
in multi-party meetings by focusing on speech processing
[8,9, 10, 11, 12, 13, 14] and visual nonverbal behaviors such
as gaze behavior [8, 9, 11] and physical motion [8, 9, 15]
near the end of an utterance. In addition to the prediction
of turn-taking, some studies have tried to predict who will
become the next speaker at the time of turn-taking and the
start time of the next speaker’s utterance. Kawahara et al.
proposed a next-speaker detection model using prosody and
gaze in three-person poster conversations [16]. We proposed
a prediction model for the next speaker and the start timing
of the next utterance using gaze transition patterns and res-
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Fig. 1. Sample scene of multi-party meetings and coordinate
system with origin at center of seated positions.

piration in multi-party meetings [1, 2, 3]. It is believed the
relationship between other nonverbal behaviors and the next
speaker and the start time of the next speaking and creating a
prediction model that uses multimodal signal processing are
important for more robust and highly precise prediction.

Several preliminary studies have investigated the head
movement feature related to a speaking state and turn-taking.
Rienks et al. reported that human observers can identify the
current speaker just by showing only participants’ head orien-
tations in multi-party meetings [17]. Duncan et al. reported
that a speaker tends to turn his/her head away from their
partner in turn-keeping and a listener tends to change their
head orientation to grab the turn in two-person dialogs [4, 5].
Several studies have built models to classify whether or not
turn-keeping and turn-taking occurs using broadly divided
head orientations annotated by an annotator observing video
of a conversation. Jokinen et al. used nine kinds of rough
head postures as features for classifying turn-keeping/turn-
taking [11]. deKok et al. used six kinds of head posture
intentions annotated by an annotator for classifying turn-
keeping/turn-taking [9]. This head posture information is
coarse compared to six DOF head movements measured with
a head tracker. Therefore, no research has investigated the
relationship between the six DOF head movement parameters
and the next speaker in multi-party meetings.

In this paper, as a first attempt to deal with the six DOF
head movements, we demonstrate the relationships between
them and the next speaker in multi-party meetings.

3. CORPUS OF MULTI-PARTY MEETINGS

We recorded four natural 12-minute four-person meetings
held by four groups of four different people (16 people
in total) (total of about 50 minutes) (Fig. 1). We built a
multimodal corpus consisting of the following verbal and
nonverbal behaviors from the recorded data.

e Utterance: A pin microphone attached to the participants’
chests recorded their voices. We built the utterance unit us-
ing an inter-pausal unit (IPU) [18]. The utterance interval
was manually extracted from the speech wave. The portion
of an utterance followed by 200 ms of silence was used as
the unit for one utterance. The supportive responses [19]

from the created IPU were excluded and an utterance unit
continued by the same person was considered one utter-
ance turn. In addition, pairs of IPUs that adjoined in time
and groups of IPUs at the time of turn-keeping and turn-
changing were created. Data for speech overlap situations,
i.e., when a listener interrupted during a speaker’s utterance
or two or more participants spoke simultaneously in turn-
changing, were excluded from the pairs of IPUs for analy-
sis. There were eventually 906 IPU groups for turn-keeping
and 148 for turn-taking.

e Head movement: Each participant’s head movement was
recorded using a Polhemus FASTRAK [20]. The small re-
ceiver attached to an adjustable band on the back of the
participant’s head detects the three DOF position (X, Y, Z)
and the three DOF rotation (azimuth, elavation, roll) at 30
Hz. The receiver’s position and rotation from the censor
were treated as their head position and rotation. The censor
coordinate system used for the analysis was converted into
a coordinate system with the origin located at the center of
the sitting position of each participant. This coordinate sys-
tem is shown in Fig. 1. The values of the head position (X,
Y, Z) and rotation (azimuth, elevation, roll) of each partic-
ipant were (0, 0, 0) and (0, 0, 0) in the coordinate system
when their sitting position was centered in each chair and
they turned their heads toward the front.

All the above mentioned data were integrated for 30 Hz.

4. ANALYSIS OF HEAD MOVEMENT

Previous research has demonstrated that a speaker tends to
turn his/her head away from their partner in turn-keeping and
a listener tends to change their head rotation to grab the turn
in two-person dialogs [4, 5]. We analyzed the head motions
of the speaker and listeners near the end of an utterance sep-
arately while considering the differing characteristics of the
head movements between them. For the speaker’s head move-
ment analysis, we analyzed how their head movement dif-
fered between turn-keeping and turn-taking. For the listeners’
head movement analysis, we divided the listeners into those in
turn-keeping, ones who will not become the next speaker in
turn-taking (hereafter, called “listeners in turn-taking”), and
the one who will be the next speaker in turn-taking (here-
after, called “next speaker in turn-taking”) and analyzed how
the head movements differed between the listeners in turn-
keeping and turn-taking and the next speaker in turn-taking.
We focused on the head movement during the interval from
three seconds before the end of an IPU to the start time of
the next IPU as an analysis parameter. We identified head
movement waves (such as speech waveforms). The follow-
ing parameters for the head position (X, Y, Z) and rotation
(azimuth, elevation, roll) were calculated for each wave and
used for analysis.
e MO: Average amount of movement per second, expressed
as the total amount during a focused interval divided by the
interval length.
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(a) MO of head position (X, Y, Z)

(b) AM of head position (X, Y, Z)

(c) FQ of head position (X, Y, Z)
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Fig. 2. Results of analysis of MO, AM, and F'Q of speaker’s head position (X, Y, Z) and rotation (azimuth, elevation, roll).

o AM: Average amplitude of movement per second, ex-
pressed as the mean amplitude value of a wave during a
focused interval.

e F'(): Average frequency of movement per second, ex-
pressed as the total number of waves during a focused
interval divided by the interval length.

4.1. Analysis of speaker’s head movement

We calculated the mean MO, AM, and F(@Q values of the
speaker’s X, Y, and Z of head position and azimuth, elevation,
and roll of the rotation with 906 data for turn-keeping and
148 data for turn-taking, which are shown in Fig. 2. We used
an unpaired one-tailed t-test to statistically verify whether the
MO, AM, and FQ of the speaker’s head position and ro-
tation in turn-taking are significantly different from those in
turn-keeping. The results suggested that there is a significant
difference in the MO of X, Y, Z, and roll, the AM of Y, Z,
and roll, and the F'Q) of Y and elevation between turn-keeping
and turn—takingl . This reveals that the M O of X, Y, Z, and roll
and the AM of Y, Z, and roll are bigger in turn-taking than in
turn-keeping.

4.2. Head movement of listeners

We calculated the mean MO, AM, and F'Q) values of the
X, Y, and Z for head position and azimuth, elevation, and
roll of the rotation of the listeners in turn-keeping and turn-
taking and the next speaker in turn-taking, which are shown
in Fig. 3. We performed a repeated one-way factorial analy-
sis of variance to verify whether the condition of the listeners
in turn-keeping and turn-taking and the next speaker in turn-
taking affected the head position and rotation parameters. The

14(1052) = 2.46, p < .05 for MO of X; £(1052) = 2.23,p < .05
for MO of Y; £(1052) = 2.19, p < .05 for MO of Z; t(1052) = 1.61,
p < .10for MO ofroll; £(1052) = 4.74, p < .10 for AM of Y; ¢t(1052) =
1.77, p < .10 for AM of Z; £(1052) = 1.82, p < .10 for AM of roll;
t(1052) = 2.17, p < .05 for FQ of Y; £(1052) = 1.65, p < .10 for FQ
of elevation

results suggested there is a significant difference in the condi-
tions for all the parameters®. Next, multiple comparisons us-
ing the Tukey-Kramer method were conducted to confirm the
differences between each pair of conditions. The results for
the MO of Y, azimuth, elevation, and roll, the AM of X, Y,
Z, azimuth, elevation, and roll, and the F'Q of X, Y, azimuth,
elevation, and roll suggested there are significant differences
between only listeners in turn-keeping and turn-taking and be-
tween listeners in turn-keeping and the next speaker in turn-
taking (for the p value of multiple comparisons, see Fig. 3).
The result for the F'Q) of Z suggested there is significant dif-
ferences between only the listeners and the next speaker in
turn-taking. The results for the MO of X and Z suggested
there are significant differences in all the pairs of conditions.
These reveal the following information.

e The MO and AM of the X, Y, Z, azimuth, elevation, and
roll of listeners and the next speaker in turn-taking are
larger than those of listeners in turn-keeping. In contrast,
the F'Q of X, Y, Z, azimuth, elevation, and roll of listeners
and the next speaker in turn-taking are less than those of
listeners in turn-keeping.

e The MO of X and Z of the next speaker in turn-taking is
larger than those of listeners in turn-taking. In contrast, the
FQ of Z of the next speaker in turn-taking is smaller than
those of listeners in turn-taking.

2F(2,3159) = 16.8, p < .01 for MO of X; F(2,3159) = 18.3,
p < .01 for MO of Y; F(2,3159) = 19.3, p < .01 for MO of Z;
F(2,3159) =77, p < .01 for MO of azimuth; F(2,3159) = 8.5,
p < .01 for MO of elevation; F'(2,3159) = 9.9, p < .01 for MO of
roll; F(2,3159) = 31.6, p < .01 for AM of X; F(2,3159) = 19.1,
p < .01 for AM of Y; F(2,3159) = 32.2, p < .01 for AM of Z;
F(2,3159) = 6.4, p < .01 for AM of azimuth; F(2,3159) = 15.9,
p < .01 for AM of elevation; F(2,3159) = 29.7, p < .01 for AM of
roll; F(2,3159) = 12.8, p < .01 for FQ of X; F(2,3159) = 20.8,
p < .01 for FQ of Y; F(2,3159) = 3.8, p < .10 for FQ of Z;
F(2,3159) = 201.1, p < .01 for FQ of azimuth; F'(2,3159) = 12.6,
p < .01 for FQ of elevation; F'(2,3159) = 8.3, p < .01 for F'Q of roll
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Fig. 3. Results of analysis of MO, AM, and F'Q of listeners’ head positions (X, Y, Z) and rotations (azimuth, elevation, roll).

5. PREDICTION MODEL

The analyses results discussed in the previous sections
showed that the speaker’s, next speaker’s, and listeners’ head
movements may be useful as predictors of the next speaker in
multi-party meetings. In this section, we used the speaker’s
and listeners’ head movements as the variables and created a
prediction model that feature two processing steps to predict
whether turn-taking or turn-keeping will occur and who will
be the next speaker in turn-taking.

5.1. Prediction of turn-keeping/turn-taking

We constructed our prediction model based on a support vec-
tor machine (SVM), in which the method used is SMO [21]
implemented in the Weka data mining tool [22], and evalu-
ated the accuracy of the model to investigate the effective-
ness of the speaker’s and listeners’ head movements near the
end of speaking for the prediction of whether turn-keeping
or turn-taking occurs. The data used in the SVM contained
the turn-keeping and turn-taking as a class. As the features,
we used the MO of X, Y, Z, and roll, the AM of Y, Z, and
roll, and the F'Q) of Y and elevation of the speaker and every
head parameter except Z of F'Q of listeners, which is different
between turn-keeping and turn-taking in as described in sub-
sections 4.1 and 4.2. We used the 10-fold cross validation of
296 data, which includes 148 data that were obtained by sam-
pling from the 906 data in turn-keeping to remove the bias
of the number of data and the 148 data in turn-taking used
in the analysis in section 4. The model was 76.2% accurate.
This suggests that the parameters of the speaker’s and listen-
ers’ head movements near the end of speaking contribute to
predicting whether turn-keeping or turn-taking occurs.

5.2. Prediction of next speaker in turn-taking

We constructed a prediction model based on the SVM as pre-
viously explained and evaluated the model’s performance to

investigate the effectiveness of the three listeners’ head move-
ments before the next utterance for the prediction of the next
speaker in turn-taking. The data used in the SVM contained
the next speaker as a class and the MO of azimuth, the F'Q)
of roll, and the AM of Z of the three listeners, which are
different between the listeners and next speaker in the turn-
taking as described in subsection 4.2. We used 10-fold cross
validation on the 148 turn-taking data. The prediction model
was 55.2% accurate. The chance level was 33.3% because
there are three next-speaker candidates in turn-taking. This
suggests that the listeners’ head movements contribute to pre-
dicting the next speaker in turn-taking.

6. CONCLUSION AND FUTURE WORK

Our analysis revealed that there are differences in the amount,
amplitude, and frequency of of movement of the head position
and rotation of the speaker between turn-keeping and turn-
taking. The results also revealed differences in the amount
of movement, amplitude, and frequency of the head position
and rotation movement between listeners in turn-keeping, lis-
teners in turn-taking, and the next speaker in turn-taking. On
the basis of these results, we created prediction models fea-
turing two processing steps to predict whether turn-taking or
turn-keeping will occur and who will be the next speaker in
turn-taking using the speaker’s and listeners’ head movement
information. The evaluation results for the models suggest
that the parameters of the speaker’s and listeners’ head move-
ments near the end of speaking contribute to predicting the
next speaker. As head movement can be readily measured
by a camera or depth sensor, such as Kinect, the head move-
ment is very useful for constructing a system that can predict
the next speaker. In future work, we will create a prediction
model for the start timing of the next speaking using head
movement. Moreover, we plan to create a robust and high-
performance prediction model using multimodal information,
such as the gaze behavior.
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