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Postgraduate Program in Informatics

Curitiba, PR, Brazil

ABSTRACT

This paper presents a novel approach for bird species identi-
fication that relies on both visual features extracted from un-
constrained bird images and acoustic features extracted from
bird vocalizations. The Scale Invariant Feature Transform
(SIFT) detects local features in bird images, which are then
used to train a support vector machine classifier. The in-
stances that are not classified with a certain degree of cer-
tainty are then rejected and reclassified using Mel-frequency
cepstral coefficients (MFCCs) extracted from the bird songs
if available. Experiments conducted on a dataset of 50 bird
species that comprise images from the CUB200-2011 and au-
dio samples from Xeno-Canto have shown that improvements
between 1.2 and 15.7 percentage points are achieved when us-
ing an acoustic classifier to re-process the instances rejected
by the visual classifier, depending on the rejection level.

Index Terms— fusion of information, fine-grained clas-
sification, combination of classifiers, SIFT, MFCC

1. INTRODUCTION

Bird species identification arouses interest in different groups
of admirers and experts whether by the beauty of birds and
their song or by their ecological importance. Bird identifica-
tion is a well-known problem to ornithologists and is consid-
ered as a scientific task since antiquity. Ornithologists study
every aspect of birds life such as birds live in their environ-
ment, parts of birds, the songs that they produce, their distri-
bution and ecological impact. There are some practical rea-
sons to observe, study or monitor birds. Scientists often use
birds to study and understand ecosystems due to many rea-
sons: they are numerous, sensitive to environmental changes,
easier to control than other species, they are everywhere and
are relatively easy to be seen.

Several real-world applications can rely on birds such as
monitoring of environmental pollution [1], assessing the qual-
ity of the environment [2] and estimating sustainability in-
dicators. Therefore, the use of automated methods for bird
identification is an effective way to assess the quantity and
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diversity of birds that appear in a region and may be useful
in several practical applications. However, bird species iden-
tification is a challenging problem both for humans and for
computational algorithms that aim to accomplish this task au-
tomatically.

Current approaches for bird species identification are ei-
ther based on acoustic or visual information. Several ap-
proaches based on bioacoustics signals have been proposed
[2, 3, 4, 5, 6, 7]. Such approaches have reached very inter-
esting correct classification rates, between 78% and 95%, de-
pending on the number of bird species taken into account. For
instance, Lopes et al. [3] show that correct classification rate
drops from 95.1% to 78.2% when the number of bird species
increases from 3 to 20. Bird species identification based on
their songs is challenging because there is also a high confu-
sion between classes, background noise and overlapping be-
tween several bird songs and a high diversity in the acquisi-
tion conditions (devices, recordist uses, context diversity, etc.)
[8]. On the other hand, the approaches based on image anal-
ysis [9, 10, 11, 12, 13, 14] have reached relatively low clas-
sification rates, between 2% and 30% in the Caltech-UCSD
Birds 200 dataset (CUB-200) which contains over 6,000 im-
ages of 200 different birds species typically from the North
America [9]. Bird species identification based on images is
also challenging due to the variation of the background and
illumination because most of the bird images are collected in
their natural habitat. In these images one cannot control ro-
tation, scale and viewing angle at the time of image acquisi-
tion. Using audio records rather than bird pictures is justified
by current practices [8]. Birds are actually not easy to pho-
tograph; audio calls and songs have proven to be easier to
collect and sufficiently species specific [8]. However, the vi-
sual properties such as color, shape, size, parts, among others,
are important for the bird species recognition and can be very
useful as the number of species taken into account increases
to hundreds or thousands species.

This paper proposes a new approach for bird species
identification that employs both visual and acoustic features.
Given the complexity of the problem, a scenario which is
visually and acoustically unconstrained, a high number of
classes, a high visual and acoustic similarity between some
bird species, background noise and a high diversity in the
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Fig. 1. Visual classification with rejection and acoustic verification.

acquisition conditions, there is a need of novel methods to
deal with each step of the problem and to provide results that
are more reliable than those achieved currently by both visual
and acoustic approaches alone. Why is the fusion of visual
and audio data important to deal with this problem? If we
take into account a more realistic scenario where the num-
ber of bird species surpasses 9,000, the scalability of current
approaches is limited [3, 14] and the fusion of information
opens up an alternative for scalability.

This paper is organized as follows. Section 2 describes the
proposed method for bird species identification. The experi-
mental results on a dataset of 50 bird species that comprises
images selected from the CUB200-2011 dataset and audio
samples selected from Xeno-Canto1 are presented in Section
3. Finally, conclusions and suggestions for future work are
presented in the last section.

2. PROPOSED APPROACH

The problem of bird species identification can be defined as:
given a bird image and/or bird song, assign a species among
a fixed and large number of possibilities. However, the main
question addressed in this paper is on how to combine both
visual and acoustic information? Considering the situation
where there is not enough audio data available, which means
that for a given instance we may have only a visual represen-
tation (bird image) or both visual and acoustic representation
(bird vocalization). In particular, only 1/4 of the instances
have one-to-one correspondence between image and audio.
Therefore both image and audio can be combined only at a
post-processing level.

The strategy that we propose in this paper is to employ
rejection at the output of the visual classifier. The concept
of rejection admits the potential refusal of a bird species hy-

1www.xeno-canto.org

pothesis if the classifier is not certain enough about the bird
species hypothesis. In our case, the probabilities assigned to
bird species should be used as a guide to establish a rejection
criterion.

Fig. 1 shows an overview of the proposed approach for
bird species identification. Given an instance, first, the visual
features are extracted from the bird image and the resulting
feature vector is classified by the multi-class SVM. The SVM
assigns a probability of such a feature vector to belong to each
one of the C classes. The MAX operator then chooses the
class which provides the highest probability. However, de-
pending on the value of such a probability as well as the avail-
ability of audio data, the instance can be either rejected or sent
to a verification stage which employs acoustic features. At
the verification stage, the acoustic feature vector is classified
by the multi-class SVM and the MAX operator chooses the
class which provides the highest probability.

The visual features are based on SIFT [15, 16] which de-
tects and describes local features in bird images. SIFT trans-
forms an image into a large collection of features which are
invariant to image translation, scaling and rotation, robust to
local geometric distortion and partially invariant to illumina-
tion changes. A Gaussian pyramid is constructed from the
input image by repeated smoothing and subsampling, and a
difference-of-Gaussians pyramid is computed from the differ-
ences between the adjacent levels in the Gaussian pyramid.
Then, interest points are obtained from the points at which
the difference-of-Gaussians values assume extrema with re-
spect to both the spatial coordinates in the image domain and
the scale level in the pyramid. Next, points with low contrast
and points along edges are discarded and dominant orienta-
tions are assigned to the remaining points. The large amount
of visual features are reduced to a small vocabulary of visual
words using the Elkan algorithm [17].

The audio samples were manually segmented (hand-
trimmed bird vocalizations) to retain only the excerpts where
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bird sing was present. The segmentation process consists in
eliminating the silence intervals and concatenating the sing
intervals as shown in Fig. 2. Hence audio data is converted
to a spectrogram-like representation, i.e. the magnitudes
of short-time Fourier transformed (STFT) frames of audio,
around 10 ms duration per frame. The STFT spectrum has
the frequency axis transformed to the Mel scale. A conven-
tion, originating from speech processing, is to transform the
Mel spectrum using a cepstral analysis and then to keep the
lower coefficients which typically contain most of the en-
ergy. These coefficients became widespread in applications
of machine learning to audio, including bird vocalizations.
MFCCs have some advantages, including that the feature val-
ues are approximately decorrelated from each other, and they
give a substantially dimension-reduced summary of spec-
tral data. We treat the full-length audio as a single unit for
training/testing purposes. Therefore the MFCCs are summa-
rized over time using the mean and standard deviation which
generates a 52-dimensional feature vector.

Fig. 2. Sample of an acoustic signal from a bird sing: the
original sample and pre-processed sample where the ”silence”
intervals were removed.

The visual and acoustic features are used to train a multi-
class SVM with linear kernel and a multi-class SVM with a
Gaussian kernel respectively. The cost and gamma parame-
ters were found by a 5-fold cross validation on the training
dataset. Pairwise coupling is used to handle multi-class clas-
sification.

The fusion of the visual and acoustic information is car-
ried out at classification level and it depends on whether an in-
stance is accepted or rejected. The task of the rejection mech-
anism is to, based on the output vector [P (ω1|x̂), . . . , P (ωc|x̂)]
provided at the output of the visual classifier, which is ordered
in a decreasing order according to the probability, decide
whether the best bird species hypothesis, which is so far
called the TOP 1, can be accepted or not. Now, the high-
est a posteriori probability provided by the MAX operator
is not simply accepted, but it is compared with a rejection
threshold (λ). If such a probability is greater than λ then the

bird species is assigned to the instance, otherwise, no label is
assigned to the instance x̂ and it is rejected. In summary, the
rejection rule is given by: (i) the TOP 1 bird species hypoth-
esis is accepted whenever P (ω′|x̂) ≥ λ; (ii) the TOP 1 bird
species hypothesis is rejected whenever P (ω′|x̂) < λ.

Two fusion schemes are proposed for those rejected in-
stances: (i) samples rejected at the visual classification are
re-classified using the acoustic data if it is available. The de-
cision is taken based solely on the verification stage; (ii) sam-
ples rejected at the visual classification are re-classified using
the acoustic data if it is available. Further the output of both
the visual and acoustic classifiers are combined through con-
ventional rules such as SUM , PROD and MAX .

3. EXPERIMENTAL RESULTS

The performance of the proposed approach was evaluated on
a subset of 50 bird species out of 200 available in CUB200-
2011 dataset [18]. The choice of particular bird species to
make up this subset was driven by the availability of bird sing
audio. However the complexity of fine-grained classification
problem remains in this subset. The training set is made up of
1,499 images and 448 audio samples with a homogenous dis-
tribution among the 50 classes with an average of 30 images
and 9 audio samples per class respectively. We have followed
the same proportions in the CUB200-2011 dataset, therefore
the testing set has 1,480 images and 422 audio samples with
an average of 30 images and 8 audio samples per class re-
spectively. Therefore, only 28.5% of the instances have both
visual and acoustic information.

The setup for visual feature extraction was 1,200 visual
words and two zoning schemes (2× 2 and 4× 4). From each
zone is computed a histogram which is quantized in 1,200 vi-
sual words. Therefore, we have a 24,000-dimensional feature
vector to represent each bird image. The setup for acoustic
feature extraction is for every 512 samples, a window of 512
samples is produced, the window is multiplied with the ham-
ming function, power spectrum is taken, MFCC is computed
and the MFCC coefficient is obtained. Afterwards, the mean
of 20 past MFCC with overlap of 19 is computed, then mean
of 5 of the previous means with 0 overlap is computed. The
same procedure is used to compute all the 13 MFCCs.

Tab. 1 shows the performance of the individual visual and
acoustic classifiers on the test subsets taken into account if
the correct bird species is among the TOP N best hypotheses.
The correct classification rate which is defined as the ratio
between number of samples correctly classified and the num-
ber of samples tested. For instance, the correct bird species
is among the TOP 6 best hypotheses for more than 57% of
the cases. Tab. 1 also shows that the acoustic features are
more discriminate than the visual ones since the correct clas-
sification rate is about 20 percentage points higher than that
achieved with the visual features. However a direct compari-
son is not fair due to the different number of samples used to
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Fig. 3. Error rate versus rejection rate.

N best Correct Classification Rate (%)
hypotheses Visual Acoustic

TOP 1 27.03 45.97
TOP 2 36.76 57.58
TOP 3 43.78 64.69
TOP 4 48.92 72.04
TOP 5 54.26 75.83
TOP 6 57.77 79.62
TOP 7 60.88 81.75
TOP 8 64.05 84.36
TOP 9 66.76 86.49
TOP 10 68.72 86.97

Table 1. Correct classification rates for the visual and acous-
tic classifiers on 1,480 images and 422 audio samples of the
testing set at 0% rejection level.

train and test the visual and acoustic classifiers.

Tab. 2 shows the performance of the different combina-
tion strategies proposed to fuse the outputs provided by both
the visual and acoustic classifiers under different rejection
rates. Different rejection levels are achieved by varying the
rejection threshold between [0, 1] and comparing it with the
highest probability assigned by the SVM classifier to the in-
stance. Recalling that the aim of the acoustic features is to
aid the visual classification of bird species, the best results
were achieved by simply re-classifying the samples rejected
by the visual classifier using the acoustic features. The im-
provements are between 1.2 and 2.9 percentage points rela-
tive to the visual classifier alone depending on the rejection
level and between 3.07 and 15.17 percentage points relative
to the visual classifier without rejection. Fig. 3 compares dif-
ferent variations of the proposed approach with the baseline
that employs only visual information to classify bird species.
In general, the improvement brought about the acoustic fea-
tures tends to increase with the rejection rate.

Strategy Rejection Rate
10% 30% 50%

Visual 28.89 32.70 40.02
Visual and Acous. 30.10 35.65 42.20
Visual and Acous. (SUM ) 29.71 35.22 41.90
Visual and Acous. (PROD) 29.96 35.25 42.04
Visual and Acous. (MAX) 29.96 35.25 42.04

Table 2. Correct classification rates for the fusion between
visual and acoustic classifiers on the testing set at 10%, 30%
and 50% rejection level.

4. CONCLUSIONS

This paper shows that the acoustic features are relevant to im-
prove the identification of bird species based on bird image.
The proposed approach has show to be useful in situations
where partial acoustic information is available. The visual
classifier alone achieved 27.03% correct classification rate.
Under the condition of a perfect rejection rule, that rejects
only the wrongly classified images, which are further classi-
fied through the audio, 37.33% of correct classification rate is
achieved. Considering a realistic condition where a rejection
rate should be established, rejecting 30% of the samples, the
combination of visual and acoustic features achieve 35% of
correct classification rate. Such a result proves the relevancy
of the acoustic information in the image classification task.

A comparison of the proposed approach with other re-
lated works is difficult because this is the first approach that
proposes the combination of visual and acoustic information
for bird species classification. In spite of the good results
achieved, the proposed approach could be improved in sev-
eral ways such optimizing both the visual and acoustic feature
extraction, or even by evaluating other strategies to combine
these complementary information. This will be the subject of
our future work.

2312



5. REFERENCES

[1] R. A. Lovet, “How birds are used to monitor pollution,”
Nature News, Nov. 2012.

[2] R. Bardeli, D. Wolff, F. Kurth, M. Koch, K-H. Tauchert,
and K-H. Frommolt, “Detecting bird songs in a complex
acoustic environment and application to bioacoustic
monitoring,” Patt Recog Letters, vol. 31, pp. pp.1524–
1534, 2010.

[3] M.T. Lopes, L.L. Gioppo, T.T. Higushi, C.A.A. Kaest-
ner, C.N. Silla, and A.L. Koerich, “Automatic bird
species identification for large number of species,” in
IEEE Int’l Symp Multimedia, 2011, pp. 117–122.

[4] M.T. Lopes, C.N. Silla Jr., A.L. Koerich, and C.A.A.
Kaestner, “Feature set comparison for automatic bird
species identification,” in IEEE Int’l Conf Sys Man Cy-
bernetics, 2011, pp. 965–970.

[5] F. Briggs, B. Lakshminarayanan, L. Neil, X. Z. Fern,
and R. Raich, “Acoustic classification of multiple si-
multaneous bird species: a multi-instance multi-label
approach,” J. Acoust. Soc. Am., vol. 131, no. 6, pp.
4640–4650, 2012.

[6] E. Stattner, W. Segretier, M. Collard, P. Hunel, and
N. Vidot, “Song-based classification techniques for
endangered bird conservation,” in Workshop Machine
Learning for Bioacoustics, Jun. 2013, pp. 67 –72.

[7] D. Stowell and M. D. Plumbley, “Automatic large-scale
classification of bird sounds is strongly improved by un-
supervised feature learning,” Tech. Rep., PeerJ, 2014.

[8] A. Joly, H. Muller, H. Goeau, H. Glotin, C. Spampinato,
A. Rauber, P. Bonnet, W.-P. Vellinga, B. Fisher, and
R. Planque, “Lifeclef: Multimedia life species identi-
fication,” in Environm. Multim. Retr. Workshop, Apr.
2014, pp. 7 –13.

[9] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff,
S. Belongie, and P. Perona, “Caltech-UCSD Birds 200,”

Tech. Rep. CNS-TR-2010-001, California Institute of
Technology, 2010.

[10] S. Branson, C. Wah, F. Schroff, B. Babenko, P. Welin-
der, P. Perona, and S. Belongie, “Visual recognition with
humans in the loop,” Tech. Rep., Univ. California, San
Diego - California Inst. Techn., 2010.

[11] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”:
interactive foreground extraction using iterated graph
cuts,” ACM Trans. Graph., vol. 23, no. 3, pp. 309–314,
Aug. 2004.

[12] Y. Chai, V. Lempitsky, and A. Zisserman, “Bicos: A bi-
level co-segmentation method for image classification,”
in IEEE Int’l Conf. Comp. Vision, nov. 2011, pp. 2579
–2586.

[13] Y. Chai, E. Rahtu, V. Lempitsky, L. Gool, and A. Zis-
serman, “Tricos: A tri-level class-discriminative co-
segmentation method for image classification,” in IEEE
Int’l Conf Comp Vision, vol. 7572 of LNCS, pp. 794–
807. Springer, 2012.

[14] A. Marini, J. Facon, and A. L. Koerich, “Bird species
classification based on color features,” in IEEE Int’l
Conf Sys Man Cybernetics, Oct 2013, pp. 4336–4341.

[15] D. G. Lowe, “Object recognition from local scale-
invariant features,” in IEEE Int’l Conf Comp Vision,
1999, vol. 2, pp. 1150 –1157.

[16] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. Comput. Vision, vol. 60, no.
2, pp. 91–110, Nov. 2004.

[17] C. Elkan, “Using the triangle inequlity to accelerate k-
means,” in Int’l Conf on Man Learning, 2003, pp. 147–
153.

[18] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie, “The caltech-ucsd birds-200-2011 dataset,”
Tech. Rep. CNS-TR-2011-001, California Inst Tech,
2011.

2313


