
LABEL WALKING NONNEGATIVE MATRIX FACTORIZATION

Long Lan, Naiyang Guan∗, Xiang Zhang, Xuhui Huang, Zhigang Luo∗

Science and Technology on Parallel and Distributed Processing Laboratory,
College of Computer,

National University of Defense Technology, Changsha 410073, China

ABSTRACT
Semi-supervised learning (SSL) utilizes plenty of unlabeled
examples to boost the performance of learning from limited
labeled examples. Due to its great discriminant power, SSL
has been widely applied to various real-world tasks such as
information retrieval, pattern recognition, and speech separa-
tion. Label propagation (LP) is a popular SSL method which
propagates labels through the dataset along high density areas
defined by unlabeled examples, LP assumes nearby examples
should share the same label, thus, it unavoidably pushes the
labels to the wrong examples, especially when different la-
beled examples are not strictly separated. Seed K-means uses
labeled examples to initialize class centers, and avoid getting
stuck in poor local optima comparing to traditional K-means,
however the hard constraint of each example’s membership
makes Seed K-means failed in many real world applications.
This paper proposes a novel label walking nonnegative matrix
factorization method (LWNMF) to handle labeled examples
in SSL based on the framework of NMF. LWNMF decom-
poses the whole dataset into the product of a basis matrix and
a coefficient matrix, and to travel labels to unlabeled exam-
ples, LWNMF regards the class indicators of labeled exam-
ples as their coefficients and iteratively updates both basis ma-
trix and coefficients of unlabeled examples. Since LWNMF
learns comprehensive class centroids, labels iteratively walk
to unlabeled examples through these significant centroids.

Index Terms— Nonnegative matrix factorization, Semi-
supervised learning, Label propagation, K-means.

1. INTRODUCTION

Recently, semi-supervised learning (SSL) attracts significant
attention [1], it has been widely studied and extends to various
methods, among them, graph based semi-supervised learning
method has shown its effectiveness in both theoretic and prac-
tical. Graph-based method constructs a graph to measure the
similarity of examples, the vertices of the graph denote ex-
amples and the edges reflect the similarity of different exam-
ples. Label propagation (LP) [2] is an effective graph based

∗Zhigang Luo (Email: zgluo@nudt.edu.cn) and Naiyang Guan (Email:
ny guan@nudt.edu.cn) are the corresponding authors.

semi-supervised learning method, it travels the labels under
the assumption that the closely connected examples should
share the same label, thus it is reasonable to use the graph
to propagate the label to the unlabeled examples. Local and
global consistency (LGC) [3] is another useful label propaga-
tion method, unlike standard LP, it propagates label in virtue
of both similarity graph and initial label, that is, each example
receives label from its neighbors and its initial state. Since s-
tandard LP and LGC depend heavily on the similarity graph,
Wang et al. proposed Linear Neighborhood Propagation (L-
NP) [4] to construct graph, which assumes that each example
can be linearly represented by its neighbors and similarities
are measured via the reconstruction weights, LNP propagates
the labels using the weight matrix. LNP avoids to the frustrat-
ing parameter selection of Euclidean space based graph, how-
ever, LNP also can not do well with the bridge points which
connect different classes and misleads the labels propagating
to the wrong direction.

K-means is the most widely used unsupervised cluster-
ing algorithm, whereas it fails in utilizing label information.
Seeded K-means [5] and Constrained K-means [5] use labeled
examples to initialize centers to improve clustering perfor-
mance, these labeled examples are called seeds in the clus-
tering. Seeded K-means updates labels of both seeds and un-
labeled examples, while Constrained K-means keeps the la-
bels of seeds fixed for each iteration round. with the help of
labeled examples, both Seeded K-means and Constrained K-
means achieve promising results. However, Seeded K-means
and Constrained K-means strictly constrain the membership
of examples, for each iteration round, every example is as-
signed to sole cluster, the exclusive assignment fails to find
the multi-semantic of examples, for example, in documen-
t analysis, each document may simultaneously pertain to two
or more topics, the hard assignment ignores the latent seman-
tics of document.

Non-negative matrix factorization (NMF) [6], as a useful
dimension reduction method, has attracted lots of attention,
recently. NMF decomposes data matrix into two low-rank
non-negative matrices, namely, the basis matrix and coeffi-
cient matrix. The solution of this factorization yields a nat-
ural parts-based representation for data. due to this favour
decomposition, NMF has been widely used in information
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retrieval[7], pattern recognition [8] [9] [10] and speech sepa-
ration [11]. Lee et al. [6] introduced NMF firstly in face rep-
resentation and document clustering. The subsequent studies
[7] [12] [13] show that the results of NMF can explain the
clustering algorithm well, in clustering, the basis matrix can
be considered as the clustering centers, and the elements of
coefficient matrix are taken as the probabilities over the corre-
sponding cluster centers, our previous work imposes normal-
ization to NMF to get the representative clusters and achieve
promising performance in image clustering [14] [15]. Ding et
al. [16] have proved that constrained NMF equals to K-means
theoretically, the objective function of K-means similar to N-
MF when impose orthogonal to rows of coefficient matrix.

In this paper, we propose label walking non-negative ma-
trix factorization (LWNMF), LWNMF uses few label infor-
mation to extract effective model. Label propagation pushes
the labels based on the similarity graph while LWNMF trav-
els labels using the basis matrix. LWNMF explains the label
walking process in an innovative way. Specifically, LWNM-
F divides into two steps for each iteration round. In the first
step, LWNMF learns basis matrix according to label of ex-
amples which corresponding to W updates of NMF. In the
second step, LWNMF travels label to the unlabeled examples
according to their distribution over basis matrix which corre-
sponding to H updates. LWNMF holds the labels of labeled
examples unchanged throughout the iteration rounds, which
makes the obtained basis matrix more representative, thus la-
bels walk smoothly. Also unlike K-means, LWNMF simulta-
neously learns the probabilities over different clusters for each
example, it reveals the multi-topics of document example.

2. RELATED WORKS

Label propagation [2] is a simple graph based semi-supervised
method, it assumes that close examples tend to have sim-
ilar labels and examples labels propagate to neighboring
examples according to their proximity. Assuming V =
[V1, V2, · · · , Vn] ∈ Rm×n

+ is the given data matrix which can
be taken as vertices of graph, and the followed matrix B is
usually used to measure the similarity of every two examples,
which is used to describe the edges of graph.

Bij = exp(
−
∑m

d=1 (v
d
i − vdj )

2

σ2
), (1)

where σ is the control parameter, label propagate to unla-
beled examples according to the weight of edges. Large edge
weight propagate label easier while small edge weight propa-
gate slowly. Labels travel through following iterations:

Y ← TY, (2)

where T is the propagation matrix which is the normalization
form of B, Y ∈ Rn×c is label matrix, where c denotes cluster

number, it initializes by the labeled examples as following:

Yij =

{
1 if i is labeled with j
0 otherwise

. (3)

Formula (2) iterates until to convergence, the position of
maximum of Y decides the examples label. Local and glob-
al consistency (LGC) [3] is also a popular label propagation
method, it propagates label under local assumption and glob-
al assumption, LGC constructs similarity graph the same way
with LP, however, LP clamps the labels of labeled examples
to their initial label to propagate labels, while LGC directly
receives label information from the initial label matrix. The
propagation procedure of LGC can be summarized:

Y ← αSY + (1− α)Y0, (4)

where S = D(−1/2)BD(−1/2), B is defined as (1) and D
is diagonal matrix whose element is the sum of each row of
B, Y0 is the initial label matrix, it is easily obtained by the
definition of (3). α tradeoffs the label information receive
from neighbors and initial state. LGC works well under the
consistency assumption. Recently, Wang et al. proposed lin-
ear neighborhood propagation (LNP) [4], unlike LP, LNP as-
sumes that every examples can be linearly reconstructed by
its neighbors, and the reconstructed coefficients consist of the
new weight matrix. LNP shows significant effectiveness and
robustness to different datasets. However, similar to LP and
LGC, it also faces to bridge point problem, bridge points lie
between classes and usually lead to label propagate to wrong
directions.

K-means is the most widely used unsupervised learn-
ing method, however, it initializes clustering centers ran-
domly, and is unavoidable to get stuck in local optima and
may achieve poor performance. Seeded K-means [5] and
Constrained K-means [5] introduce labeled examples which
called seeds to centers initialization and help reduce the
chance of obtaining poor local optima. seeds are selected
from all clusters evenly, after initializing the centers, Seeded
K-means and Constrained K-means reassigned the label of
each example according to its distance to the obtained cen-
ters. the center recalculated step and labels reassigned step
iterate until to achieve stationary point. Seeded K-means and
Constrained K-means share the same centers calculated step,
however, they are different in labels assigned step, Seeded
K-means reassigns the labels of all examples including the
seeds, while the reassigned process of Constrained K-means
only focuses on unlabeled examples, the labels of seeds keep
their initial state throughout.

NMF is an popular unsupervised learning method, it de-
composes an nonnegative data matrix into two low-rank non-
negative matrices [6]. To achieve this goal, NMF minimizes
summation of the squared residues between the data matrix
V = [v1, v2, · · · , vn] ∈ Rm×n

+ and the product of basis ma-
trix W = [w1, w2, · · · , wc] ∈ Rm×c

+ and coefficient matrix
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H = [h1, h2, · · · , hn] ∈ Rc×n
+ . c denotes a new dimension,

generally c≪ min(m,n).

f(W,H) = min
W,H
||V −WH||2F , s.t.W,H ≥ 0, (5)

where || • ||2F denotes Frobenius norm. NMF has been proven
theoretically equal K-means when imposing constraints of
row orthogonality on coefficient matrix [16]. K-means strict-
ly constrains the value of each label vector, allowing only one
non-zero element. However, NMF relaxes this constraint,
and just emphasizes its non-negativity of all elements. From
this view, we can also see that K-means may easily fall in-
to poor local optima since this discrete optimization. NMF
shows good performance in clustering, when set c equal to the
number of classes, it can explains the clustering directly. W
signifies cluster centers whose columns are the centroids of
every cluster, and H signifies the label matrix whose columns
indicate the cluster membership of examples, as each column
of H have many non-zero elements, NMF considers the index
of maximal value as examples label.

3. LABEL WALKING NMF

In this section, we introduce label walking nonnegative ma-
trix factorization, which discusses label walking in the view
of NMF. LWNMF travels labels along with the optimization
of NMF. Firstly, we regard label matrix as coefficient matrix,
and the given label matrix guides the construction of basis
matrix which can be considered as walking matrix, in the fol-
lowing updates, labels walk to the unlabeled part in virtue of
the temporally learned basis matrix. Traditional label propa-
gation method fixes its propagation matrix and label travels to
neighbors according to proximity, whereas, LWNMF updates
the walking matrix iteratively and label walks to unlabeled
examples according to their distribution over the walking ma-
trix. It is difficult for traditional label propagation to deal with
the bridge examples, since local assumption do not considers
the case of examples located in border, and bridge examples
usually propagate label to the wrong direction and lead to a
large crowd of errors [4]. However, LWNMF travels label
according to the distribution of all examples, and well copy
with bridge examples. We introduce the following objective
for LWNMF:

f(W,Hu) = min
W≥0,Hu≥0

1
2 ||Vl −WHl||2F

+λ
2 ||Vu −WHu||2F + σ

2 ||W
T 1m − 1c||2F

,

(6)
where λ tradeoffs the labeled part and unlabeled part, the first
part and second part share the same W , this constrained basis
matrix travels label information effectively. Hl is the label
matrix of labeled examples, which is the transposing defini-
tion of (3), Hu can be regarded as soft label matrix of unla-
beled examples, and each column is supposed to be the prob-
abilities over different clusters for an example. The third term

of (6) is used to column-normalized W , which makes sense
for Hu, and will be explained in the following, σ is the bal-
ance parameter, 1m ∈ Rm and1c ∈ Rc are vectors whose
elements are all equal 1.

To keep the label probability interpretable, traditional LP
must normalizes the label matrix in each iteration round. For-
tunately, some simple normalization can implicitly make L-
WNMF interpretable to probability distribution. We column-
normalize V in advance, this normalization shows favorable
effects, as the following proposition:∑

i
Vij =

∑
i

∑
k
WikHkj =

∑
k
(
∑

i
Wik)Hkj = 1.

(7)
From (7) we know that for V,W,H , if V = WH , and

both V and W are column-normalized, then H also column-
normalized. The proposition explicitly explains the necessity
of normalization of V . In practice, LWNMF normalizes each
column of V at first, it is obvious that the minimization of the
third term of (7) make W approximately column-normalized.
And according to the proposition, the column-normalized W
can be used to normalize Hu. The parameter λ and σ control
the degree of normalization, Generally speaking, the larger of
σ, the stronger of the normalization.

4. EXPERIMENT

In this section, we analyze labels travel results for standard LP
[2], LGC [3], LNP [4], and semi-supervised K-means [5], and
compare their performance in Reuters-21578 1, TDT-2 2and
WebKB3 corpus. We introduce accuracy (AC) [17] to mea-
sure the clustering performance of LWNMF, AC compares
the predicted label with the given label of unlabeled examples,
for each example, if the propagated label is identical with its
given label, the accuracy number adds 1, otherwise we ignore
the incorrect propagation. AC is the ratio of accuracy number
to number of all unlabeled examples u:

AC =
sum(δ(P,G))

u
, (8)

where P ∈ Ru and G ∈ Ru are the predicted label and
ground truth respectively. σ(P,G) denotes delta function that
if P and G share the same value in the corresponding posi-
tion then its value equals 1, and 0 otherwise. In practice, the
predicted label vector P usually completely different from G,
using above evaluation makes no sense. Hence before calcu-
lating AC, a map function should implement to match P to
G, the P in (8) is the mapping result. It is obvious that AC
increases with the prediction accuracy improving. Reuters-
21578 consists of 21578 documents, and divides into 135
clusters. TDT-2 has 64527 documents, which grouped into
100 clusters. In our experiments, to meet the requirements

1http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
3http://www.cs.umd.edu/ sen/lbc-proj/LBC.html
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of testing, we remove the documents which have multiple
labels and leave these ones which have only one label, Af-
ter this preprocessing, Reuters-21578 leaves 8213 documents
and groups into 41 clusters. TDT-2 remains 10021 documents
and can be categorized into 56 clusters. WebKB is collection
of 842 web pages from 4 universities which can be divided
into 5 clusters.

We compare the performance of LWNMF with standard
label propagation algorithm (LP) [2], local and global con-
sistency (LGC) [3], linear neighborhood propagation (LNP)
[4], seeded K-means (SKM) [5] and constrained K-means
(CKM) [5] in different cluster number, the number of clus-
ter varies from 2 to 10 on both Reuters-21578 and TDT-2,
WebKB varies the cluster number from 2 to 5. To valid the
clustering results, we repeat the above algorithms on 50 dif-
ferent cluster sets for different cluster number situations and
calculate the averages. In testing, five labeled examples are
randomly selected for each cluster. On the other hand, we
vary label size of each cluster to see the ability of LWNM-
F to utilize label information, label size varies from 1 to 10
means we select 1 to 10 labeled examples for each cluster in
the experiments. In the label size experiment, we keep the
number of clusters to 10 on Reuters-21578 and TDT-2, and
5 on WebKB, the label size results are also the average of 50
performances using different cluster sets. In experiment, we
find the parameters of λ and σ can be set in a wide range, and
experientially speaking, λ should less than the quantity ra-
tio of labeled examples to unlabeled examples. NMF and K-
means are also implemented as the benchmark. Figure 1 (a),
(c) and (e) show the performance of LWNMF versus differ-
ent cluster number on Reuters-21578, TDT-2 and WebKB re-
spectively. In experiments, we randomly label five examples
for each cluster. From the figures, the benchmark methods
of NMF and K-means obtain the similar results on Reuters-
21578, TDT-2 and WebKB, and both them are far poor than
the rest of methods without the labeled examples, the few la-
beled examples are really helpful. It is obvious that LWNMF
outperforms other methods on Reuters-21578 and WebKB for
different cluster numbers, and is comparable with SKM, CK-
M, LP on TDT-2. The curves of AC suppose that LWNMF
effectively travels labels to unlabeled examples. Seeded K-
means and Constrained K-means almost achieve the same re-
sult from the pictures, which can be well explained since there
is no wrongly labeled seeds. Figure 1 (b), (d), (f) are the re-
sults of varying label size, we can see that LWNMF shows the
best performance comparing to the rest algorithms in differ-
ent label size on both Reuters-21578 (Figure 1 (b)) and TDT-2
(Figure1 (d)). LWNMF on WebKB (Figure1 (f)) is worse than
other algorithms in small label size, however, it is comparable
to the best Semi-supervised K-means when labeled examples
is enough. From all these three pictures, it is reasonable to
believe that LWNMF can travel labels to unlabeled examples
effectively, even there are few available labels.
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Fig. 1. clustering results on Reuters{(a),(b)}, TDT-2{(c),(d)}
and WebKB{(e),(f)}

5. CONCLUSION

We have introduced a novel semi-supervised non-negative
matrix factorization method in this paper, called label walk-
ing non-negative matrix factorization, which shows promis-
ing performance on document clustering. LWNMF considers
coefficient matrix as label matrix, and learns the basis ma-
trix under the constraints of label information and the whole
examples, we regard the basis matrix as walking matrix and
labels effectively walk to unlabeled examples according to the
their distributions. The normalization of LWNMF makes la-
bel matrix probability interpretable and takes favorable effect
in the label propagation. The experiments on three document
corpora have demonstrated the effectiveness of our algorithm
when comparing to the mentioned classical semi-supervised
learning methods.
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